matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraUntervektorräume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Untervektorräume
Untervektorräume < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untervektorräume: Brauche einen Tipp^^
Status: (Frage) beantwortet Status 
Datum: 19:35 Mo 19.11.2007
Autor: Patroklos

Aufgabe
Es sei K ein Körper und M [mm] \not= \emptyset [/mm] und x [mm] \in [/mm] M ein darin enthaltenes Element gegeben.
Zeigen Sie:

a) Die Mengen U = {f [mm] \in K^M [/mm] | f(x) = 0}
und V = {f [mm] \in K^M [/mm] | f(a) = f(b) für alle a,b [mm] \in [/mm] M}

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Also, ich muss jetzt ja zeigen, dass U und V die Unterraumkriterien erfüllen. Allerdings weiß ich nicht, wie ich einzelne Elemente von U oder V darstellen soll, damit ich eben diese Kriterien (also Abgeschlossenheit gegenüber der Addition mit Nullelement und gegenüber der skalaren Multiplikation) beweisen kann.

        
Bezug
Untervektorräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:48 Mo 19.11.2007
Autor: Patroklos

Eben kam die langersehnte Erleuchtung^^

Wenn man den ganzen Tag Mathe macht muss man auch mal auf dem Schlauch stehen dürfen^^


Also U hat sich erledigt. Das einzige Problem habe ich im Moment noch mit V. Klappt irgendwie nicht ganz analog^^

Bezug
        
Bezug
Untervektorräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:31 Mo 19.11.2007
Autor: Patroklos

c) z.Z.: U + V = [mm] K^M [/mm]

Ich muss ja zeigen, dass die beiden linear unabhängig voneinander sind und gemeinsam [mm] K^M [/mm] bilden, aber wie?

Bezug
        
Bezug
Untervektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 21:29 Mo 19.11.2007
Autor: angela.h.b.


> Es sei K ein Körper und M [mm]\not= \emptyset[/mm] und x [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

M ein

> darin enthaltenes Element gegeben.
>  Zeigen Sie:
>  
> a) Die Mengen U = {f [mm]\in K^M[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

| f(x) = 0}

>  und V = {f [mm]\in K^M[/mm] | f(a) = f(b) für alle a,b [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

M}

Hallo,

einige Deiner Fragen dürften sich erledigen, wenn Du das hier gründlich studierst.

Wenn Fragen offen bleiben, kannst Du ja nochmal nachfragen.

Gruß v. Angela

Bezug
                
Bezug
Untervektorräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:54 Mo 19.11.2007
Autor: Patroklos

Gut, die c) ist auf jeden Fall klar^^

Ich hab bloß immer noch ein Problem damit, bei der a) zu zeigen, dass V ein Unterraum von [mm] K^M [/mm] ist... vielleicht steh ich einfach nur total aufm Schlauch, ich sitz schon seit Stunden an dem Übungszettel XD

Bezug
                        
Bezug
Untervektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 22:40 Mo 19.11.2007
Autor: angela.h.b.


> Ich hab bloß immer noch ein Problem damit, bei der a) zu
> zeigen, dass V ein Unterraum von [mm]K^M[/mm] ist...

Hallo,

mach Dir klar, daß in V die konstanten Funktionen sind, dann ergibt sich der Rest.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]