matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeUntervektorraum zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Moduln und Vektorräume" - Untervektorraum zeigen
Untervektorraum zeigen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untervektorraum zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:13 Mo 11.07.2016
Autor: DerPinguinagent

Ich bin bei meiner Klausurvorbereitung mittlerweile bei Vektorräumen angekommen. Jetzt habe ich mal zu einem Beispiel was der Prof an die Tafel geschrieben hat eine Frage.

Als Beispiel zum Thema UVR hat der Prof geschrieben:

v [mm] \in [/mm] V [mm] span_{k}=(\lambda*v:\lambda [/mm] in K) ist UVR

Ich will jetzt zeigen, dass [mm] \lambda \in [/mm] K, v [mm] \in [/mm] U => [mm] \lambda*v \in [/mm] U

Wie kann man das machen?

LG DerPinguinagent

        
Bezug
Untervektorraum zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:52 Mo 11.07.2016
Autor: fred97


> Ich bin bei meiner Klausurvorbereitung mittlerweile bei
> Vektorräumen angekommen. Jetzt habe ich mal zu einem
> Beispiel was der Prof an die Tafel geschrieben hat eine
> Frage.
>
> Als Beispiel zum Thema UVR hat der Prof geschrieben:
>  
> v [mm]\in[/mm] V [mm]span_{k}=(\lambda*v:\lambda[/mm] in K)


das ist ja völlig chaotisch !  Das hat Dein Prof garantiert nicht geschrieben.


> ist UVR
>  
> Ich will jetzt zeigen, dass [mm]\lambda \in[/mm] K, v [mm]\in[/mm] U =>
> [mm]\lambda*v \in[/mm] U
>  
> Wie kann man das machen?

Wenn Du preisgeben würdest, was U ist, kann man Dir sicher helfen

fred

>  
> LG DerPinguinagent


Bezug
        
Bezug
Untervektorraum zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 05:51 Di 12.07.2016
Autor: fred97

Ich vermute, dass es um folgendes geht:

V sei ein K-Vektoraum, es sei v [mm] \in [/mm] V fest und

  [mm] U:=\{\lambda*v: \lambda \in K\}. [/mm]

Behauptet wird: U ist ein Untervektorraum von V.


Vermute ich richtig ?

FRED

Bezug
                
Bezug
Untervektorraum zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:41 Di 12.07.2016
Autor: DerPinguinagent

Ja die Vermutung ist richtig!

LG DerPinguinangent

Bezug
                
Bezug
Untervektorraum zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:34 Mi 13.07.2016
Autor: DerPinguinagent

Ja ist richtig!

Bezug
                        
Bezug
Untervektorraum zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:45 Mi 13.07.2016
Autor: fred97


> Ja ist richtig!

Und nun willst Du wissen, wie man zeigt, dass

   $ [mm] U:=\{\lambda\cdot{}v: \lambda \in K\}$ [/mm]

ein Untervektorraum ist ?

Das zeigt man wie üblich: sind [mm] $u_1,u_2 \in [/mm] U$ und ist [mm] $\mu \in [/mm] K$,

so ist zu zeigen:   [mm] $u_1+u_2 \in [/mm] U$ und  [mm] $\mu u_1 \in [/mm] K$.

Probiers mal.

FRED


Bezug
                                
Bezug
Untervektorraum zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:02 Fr 15.07.2016
Autor: DerPinguinagent

Die Addition hätte ich folgendermaßen gezeigt:

[mm] a,b\in [/mm] U => Ex. [mm] v_{1},v_{2} \in [/mm] U : [mm] a=\lambda v_{1} [/mm] und [mm] b=\lambda v_{2} [/mm]

[mm] a+b=\lambda v_{1}+\lambda v_{2} [/mm] <=> [mm] \lambda*(v_{1}+ v_{2}) \in [/mm] U

Mit der Multiplikation komme ich nicht ganz klar.

Bezug
                                        
Bezug
Untervektorraum zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:57 Fr 15.07.2016
Autor: leduart

Hallo
so ist es falsch.
wenn v1 und v2 aus U sind ist [mm] v_1=\lambda_1*v, v_2=\lambda_2*v [/mm]
damit musst du argumentieren. Du hast anscheinend nicht verstanden, dass v ein fester Vektor ist, und dass du benutzen musst, dass v1 und v2 aus U sind. die Multiplikation ist ganz einfach , da [mm] \lambda [/mm] ja aus K ist und nicht eine feste Zahl.
Gruß leduart

Bezug
                                                
Bezug
Untervektorraum zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:19 Fr 15.07.2016
Autor: DerPinguinagent

Also: Sei [mm] u_{1}, u_{2} \in [/mm] U => Ex. [mm] \lambda_{1}, \lambda_{2} \in [/mm] U : [mm] u_{1}=\lambda_{1}*v [/mm] und [mm] u_{2}=\lambda_{2}*v [/mm] => [mm] u_{1}+u_{2}=\lambda_{1}*v+\lambda_{2}*v=>u_{1}+u_{2}=(\lambda_{1}+\lambda_{2})*v \in [/mm] U

Das mit der Multiplikation verstehe ich immer noch nicht! Kann mir das vielleicht jemand zeigen?

LG DerPinguinagent

Bezug
                                                        
Bezug
Untervektorraum zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:29 Fr 15.07.2016
Autor: leduart

Hallo
[mm] \lambda [/mm] in U ist sinnlos, \ lambda in K dem skalaren  Körper, der zu V gehört, am besten stellst du dir darunter eine reele Zahl vor. also K=RR
wenn du
[mm] u_1=\lambda_1*v [/mm] mit [mm] \lambda_2 [/mm] multiplizierst. warum liegt dann [mm] \lambda_2*\lambda:1*v [/mm] wieder in U
Gruß leduart

Bezug
                                                                
Bezug
Untervektorraum zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:06 Fr 15.07.2016
Autor: DerPinguinagent

Das ist doch per Definition so oder sehe ich das falsch!

Bezug
                                                                        
Bezug
Untervektorraum zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:29 Sa 16.07.2016
Autor: leduart

Hallo
nicht per Definition sondern weil [mm] \lambda_1*\lambda_2 [/mm] in K und deshalb wieder in U. Wenn das per Definition klar ist warum konntest du es nicht?
du solltest die Behauptungen erst mal hinschreiben, dann ist es wirklich fast trivial, aber anscheinend starrst du auf die Aufgaben und probierst nichts aus?
Gruß leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 1h 33m 5. kcin
MaßTheo/Bestimmung einer Menge
Status vor 7h 54m 2. fred97
UAnaInd/Vollständige Induktion
Status vor 9h 32m 9. Roadrunner
UKomplx/komplexe Wurzelfunktion
Status vor 22h 53m 6. questionpeter
UWTheo/Markov-Kette
Status vor 23h 58m 7. sancho1980
IntTheo/Uneigentliches Integral
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]