matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitUrbild muss in C0(X) sein
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stetigkeit" - Urbild muss in C0(X) sein
Urbild muss in C0(X) sein < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Urbild muss in C0(X) sein: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:52 So 16.11.2014
Autor: drossel

Hi
X sei ein lokalkompakter Hausdorffraum, [mm] Y\subseteq [/mm] X abgeschlossen,
ich soll zeigen, dass die Abbildung
[mm] p:\{f\in C_0(X); f(x)=0\; \text{für alle}\; x\in Y\}\to C_0(X\setminus [/mm] Y)
[mm] f\mapsto f_{|X\setminus Y } [/mm] die Einschränkung von f
surjektiv ist.
Dh ist [mm] f\in C_0(X\setminus [/mm] Y), so definiere ich mir [mm] g(x):=\begin{cases} f(x), & \mbox{für }x\in X\setminus Y \\ 0, & \mbox{für } x\in Y \end{cases} [/mm]
Das soll mein Urbild für f sein. Dazu muss ich noch begründen, dass [mm] g\in C_0(X), [/mm] also g ist stetig und g verschwindet im unendlichen.
Die Stetigkeit von g auf den Teilbereichen [mm] X\setminus [/mm] Y und Y sind klar, aber g muss ja auch vom Übergang her stetig sein, also für [mm] x\in X\setminus [/mm] Y mit [mm] x\to x_0, x_0 [/mm] in Y müsste [mm] f(x)\to f(x_0) [/mm] gelten? Aber da Y abgeschlossen ist, kann das ja nicht sein oder? Kann mir dazu jemand helfen, was alles hier für die Stetigkeit gelten muss?
Gruß

        
Bezug
Urbild muss in C0(X) sein: Antwort
Status: (Antwort) fertig Status 
Datum: 07:49 Mo 17.11.2014
Autor: fred97

Zunächst sollten wir mal einiges klären:

1. Sei [mm] C_c(X) [/mm] die Menge aller reell- oder komplexwertigen Funktionen auf X mit kompaktem Träger. Für $f [mm] \in C_c(X)$ [/mm] ist

   [mm] ||f||_{\infty}:=\sup \{|f(x)|:x \in X\}. [/mm]

2. es ist [mm] C_0(X):=\overline{C_c(X)} [/mm] (Abschluss bezüglich [mm] ||*||_{\infty}) [/mm]

[mm] C_0(X) [/mm] ist vollständig bezüglich [mm] ||*||_{\infty} [/mm]


3. Es ist $f [mm] \in C_0(X)$ \gdw [/mm] für jedes c>0 ist [mm] \{x \in X: |f(x)| \ge c\} [/mm] kompakt.

Nun versuch Deine Beweis mal mit 3.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]