Urne mit Kugeln < Wettbewerbe < Schule < Mathe < Vorhilfe
|
Status: |
(Übungsaufgabe) Übungsaufgabe | Datum: | 10:41 Fr 27.08.2004 | Autor: | Stefan |
Mal eine Wettbewerbsaufgabe, die Kombinatorik und elementare Zahlentherorie verbindet:
In einer Urne liegen $n$ Kugeln, weiße und schwarze. Wir ziehen mit einem Griff zwei Kugeln. Wenn die Wahrscheinlichkeit für das Ereignis "man zieht ein gemischtes Paar" genau [mm] $\frac{1}{2}$ [/mm] ist, was kann man dann über den Inhalt der Urne aussagen?
Viel Spaß!
Stefan
|
|
|
|
Hallo.
Ich habe mir folgenden Ansatz überlegt:
Die Anzahl Möglichkeiten aus n Kugeln zwei Kugeln auszuwählen (unabhängig von der Reihenfolge in der man sie zieht) beträgt
[mm]\bruch{n!}{(n-2)!*2!} = \bruch{n*(n-1)}{2}[/mm]
Die Anzahl der Fälle in denen man ein gemischtes Paar ziehen würde beträgt (wieder unabhängig von der Reihenfolge in der man die 2 jeweiligen Kugeln zieht):
[mm]w*s[/mm]
w = Anzahl d. weissen Kugeln
s = Anzahl d. schwarzen Kugeln
[mm]n = w+s[/mm]
Die Wahrscheinlichkeit ein gemischtes Paar zu ziehen ist somit:
[mm]\bruch{2ws}{(w+s)*(w+s-1)}[/mm]
Es muss also gelten
[mm]\bruch{2ws}{(w+s)*(w+s-1)} = \bruch{1}{2}[/mm]
[mm]4ws = w^2+2ws+s^2-w-s[/mm]
[mm]w^2-w*(2s+1)+s*(s-1) = 0[/mm]
[mm]w = s + \bruch{1}{2} \pm \wurzel{\bruch{4s^2+4s+1}{4}-s^2+s}[/mm]
[mm]w = s + \bruch{1}{2} \pm \bruch{\wurzel{8s+1}}{2}[/mm]
Jetzt müsste man noch zeigen wann 8s+1 eine Quadratzahl ist...
MfG
Jan
|
|
|
|
|
Hallo Stefan.
Ich habe da noch etwas herausgefunden:
[mm]8s+1[/mm] ist für alle [mm]s = \bruch{z*(z+1)}{2}[/mm]
eine Quadratzahl da
[mm]4z^2+4z+1 = (2z+1)^2[/mm]
Mit 8s+1 lässt sich also das Quadrat jeder ungeraden Zahl darstellen.
[mm]w = s + \bruch{1}{2} \pm \bruch{\wurzel{8s+1}}{2}[/mm]
[mm]w = \bruch{z^2+3z+2}{2}[/mm]
bzw.
[mm]w = \bruch{z^2-z}{2}[/mm]
je nachdem ob man addiert oder subtrahiert.
Der zweite Fall ist allerdings etwas ungünstig, da das Ergebnis mit z=1 (bzw. s=1) keinen Sinn ergibt (Im zweiten Fall geht man davon aus, dass es mehr Schwarze Kugeln gibt).
[mm]n = w + s = \bruch{2z^2+4z+2}{2} = \bruch{2*(z+1)^2}{2} = (z+1)^2[/mm]
n kann also den Wert jeder Quadratzahl (bis auf [mm]1^2=1[/mm]) annehmen.
[mm]w = \bruch{z^2+3z+2}{2} = \bruch{(z+1)(z+2)}{2}[/mm]
[mm]s = \bruch{z*(z+1)}{2}[/mm]
Oder eben umgekehrt:
[mm]s = \bruch{z^2+3z+2}{2} = \bruch{(z+1)(z+2)}{2}[/mm]
[mm]w = \bruch{z*(z+1)}{2}[/mm]
MfG
Jan
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 03:14 Sa 28.08.2004 | Autor: | Stefan |
Lieber Jan!
Sehr, sehr schön!
Ich hatte auch raus, dass $n$ eine Quadratzahl sein muss, konnte es aber ausgehend von deiner Rechnung nicht zeigen. (Ich habe die Tasache, dass $n$ eine Quadratzahl sein muss, ähnlich, aber eben nicht genau gleich, gezeigt.) Dir ist das aber sehr gut gelungen, das auch ausgehend von deinem Ergebnis zu zeigen.
Dafür allerhöchsten !!
Wirklich, ich bin echt beeindruckt. Und finde es echt super, dass wir jetzt so viele begabte junge Mathematiker im Forum haben. Allein dafür hat sich das Wettbewerbs-Forum schon gelohnt.
Beantworte doch mal ein paar Fragen von Hilfsbedürftigen im Forum, damit ich dich für unser Projektteam vorschlagen kann.
Liebe Grüße
Stefan
|
|
|
|