matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikUrnenspiele
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stochastik" - Urnenspiele
Urnenspiele < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Urnenspiele: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:51 So 20.06.2004
Autor: aLeX.chill

Ich hatte die Aufgabe schon mal gepostet, aber es gab damals keine konkrete 100%ige Antwort ob sie falsch oder richtig war. Deshalb noch mal kurz:
Eine Urne enthält 4 weiße und 6 schwarze Kugeln. Die Kugeln unterscheiden sich nur durch ihre Farbe.
1. Aus der Urne werden zufällig 4 Kugeln mit Zurücklegen gezogen. Die Zufallsgröße X sei die Anzahl der gezogenen weißen Kugeln.

Stellen Sie die Wahrscheinlichkeitsverteilung der Zufallsgrößen X in Tabellenform auf.

x=1:
[mm](4/10)*(6/10)^3*(4!/3!1!)[/mm]
x=2:
[mm](4/10)^2*(6/10)^2*(4!/2!2!)[/mm]
x=3:
[mm](4/10)^3*(6/10)*(4!/3!1!)[/mm]
x=4
[mm](4/10)^4[/mm] (da spielt die Reihenfolge ja keine Rolle mehr?)

        
Bezug
Urnenspiele: Antwort
Status: (Antwort) fertig Status 
Datum: 18:03 So 20.06.2004
Autor: Brigitte

Hallo Alex (nehme ich an),

> Ich hatte die Aufgabe schon mal gepostet, aber es gab
> damals keine konkrete 100%ige Antwort ob sie falsch oder
> richtig war.

Tut mir leid. Da war ich noch nicht dabei und kann mich daher auch nicht dran erinnern, was damals die Antwort war.

>  Deshalb noch mal kurz:
>  Eine Urne enthält 4 weiße und 6 schwarze Kugeln. Die
> Kugeln unterscheiden sich nur durch ihre Farbe.
>  1. Aus der Urne werden zufällig 4 Kugeln mit Zurücklegen
> gezogen. Die Zufallsgröße X sei die Anzahl der gezogenen
> weißen Kugeln.
>  
> Stellen Sie die Wahrscheinlichkeitsverteilung der
> Zufallsgrößen X in Tabellenform auf.
>  
> x=1:
>  [mm](4/10)*(6/10)^3*(4!/3!1!)[/mm]
>  x=2:
>  [mm](4/10)^2*(6/10)^2*(4!/2!2!)[/mm]
>  x=3:
>  [mm](4/10)^3*(6/10)*(4!/3!1!)[/mm]
>  x=4
>  [mm](4/10)^4[/mm] (da spielt die Reihenfolge ja keine Rolle
> mehr?)

Das ist alles in Ordnung. Du hast allerdings den Fall $x=0$ übersehen.
Aber den bekommst Du bestimmt auch noch hin. (Schließlich muss die Summe über die Wahrscheinlichkeiten insgesamt 1 ergeben.)

Es kommt übrigens bei allen Ergebnissen nicht auf die Reihenfolge an. Zum Beispiel bei $x=3$ ist es ja egal, welche von den vier gezogenen Kugeln die eine schwarze Kugel ist. Deshalb multiplizierst Du ja noch mit ${4 [mm] \choose 1}=\frac{4!}{3!1!}=4$. [/mm] Weißt Du eigentlich, welchen Namen diese Verteilung hat?

Viele Grüße
Brigitte



Bezug
                
Bezug
Urnenspiele: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:25 So 20.06.2004
Autor: aLeX.chill

  
> Das ist alles in Ordnung. Du hast allerdings den Fall [mm]x=0[/mm]
> übersehen.

x=0:
[mm](6/10)^4[/mm]

> Es kommt übrigens bei allen Ergebnissen nicht auf die
> Reihenfolge an. Zum Beispiel bei [mm]x=3[/mm] ist es ja egal, welche
> von den vier gezogenen Kugeln die eine schwarze Kugel ist.
> Deshalb multiplizierst Du ja noch mit [mm]{4 \choose 1}=\frac{4!}{3!1!}=4[/mm].

Das blick ich jetz nicht ganz genau. Wenn ich 2 weisse Kugeln ziehen muss, gibt es ja mehrere Möglichkeiten wie ich die ziehen kann:
s,s,w,w oder w,w,s,s oder w,s,s,w etc.... ?!

> Weißt Du eigentlich, welchen Namen diese Verteilung hat?

Binomialverteilung


Bezug
                        
Bezug
Urnenspiele: Antwort
Status: (Antwort) fertig Status 
Datum: 19:26 So 20.06.2004
Autor: Brigitte

Hallo nochmal!

> > Das ist alles in Ordnung. Du hast allerdings den Fall [mm]x=0[/mm]
>
> > übersehen.
> x=0:
>  [mm](6/10)^4[/mm]

Genau.

> Das blick ich jetz nicht ganz genau. Wenn ich 2 weisse
> Kugeln ziehen muss, gibt es ja mehrere Möglichkeiten wie
> ich die ziehen kann:
>  s,s,w,w oder w,w,s,s oder w,s,s,w etc.... ?!

Ja, genau, aber da es nur um die Anzahl der weißen Kugeln geht und nicht darum, wann welche Kugel gezogen wird, multipliziert man immer noch mit dem Binomialkoeffizienten ${4 [mm] \choose [/mm] x}$. Ich wollte das nur hinzufügen, um auf Deinen Kommentar hinter Deinem letzten Teilergebnis zu reagieren. Da kommt es erst recht nicht auf die Reihenfolge an, weil man gar keine Reihenfolge unterscheiden kann (schließlich haben alle gezogenen Kugeln die selbe Farbe). Vielleicht reden wir da ein wenig aneinander vorbei. Wenn ich sage, dass es nicht auf die Reihenfolge ankommt, meine ich, dass man die verschiedenen Ergebnisse nicht unterscheidet, in welcher Reihenfolge sie gezogen werden. Natürlich muss man diese Situation aber bei der Berechnung der Wahrscheinlichkeiten berücksichtigen (und ich denke, das ist das, was Du damit meintest, denn bei $x=0$ und $x=4$ mulitpliziert man mit Faktor $1={4 [mm] \choose [/mm] 0}={4 [mm] \choose [/mm] 4}$). Tut mir leid, wenn ich Dich verwirrt habe.

>  > Weißt Du eigentlich, welchen Namen diese Verteilung

> hat?
>  Binomialverteilung

[daumenhoch]

VIele Grüße
Brigitte

>  


Bezug
                                
Bezug
Urnenspiele: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:45 So 20.06.2004
Autor: aLeX.chill

Also muss ich dann einfach die Binomialverteilung weglassen, dann stimm es ?

Bezug
                                        
Bezug
Urnenspiele: Antwort
Status: (Antwort) fertig Status 
Datum: 20:42 So 20.06.2004
Autor: Brigitte

Hallo nochmal!

Also muss ich dann einfach die Binomialverteilung

> weglassen, dann stimm es ?

Du meinst den Binomialkoeffizienten, nehme ich an.

Nein, Deine Ergebnisse sind ALLE so RICHTIG, wie Du es hingeschrieben hast. Und insgesamt ist es eine Binomialverteilung, wie Du ja bereits richtig erkannt hast. Ich wollte nur noch kurz auf Deine Begründung eingehen. Tut mir leid, dass da so ein Missverständnis draus geworden ist.

Viele Grüße
Brigitte

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]