VaR-Aufgabe < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
|
Definition: In der Sprache der Statistik handelt es sich beim VaR um das [mm] 1-\alpha-Quantil [/mm] der Verteilung aller zufälligen Gewinne und Verluste am Ende der Haltedauer.
Aufgabe | Beispiel:
[mm] \alpha=99%
[/mm]
[mm] \Delta t=1\250
[/mm]
Angenommene Verteilung der Gewinne und Verluste N(0, [mm] \sigma^2) [/mm]
Ergebnis:
[mm] VaR=\sigma\Phi^{-1}(0,01)\approx [/mm] -2,33 [mm] \cdot \sigma
[/mm]
weil das 1%-Quantil der Verteilung N(0,1) den Wert -2,33 hat. |
Hallo zusammen!
habe dieses Beispiel in einem Buch gefunden und komme irgendwie nicht auf diesselbe Formel.
Also mein [mm] 1-\alpha-Quantil [/mm] ist das 1%-Quantil.
In wikipedia habe ich unter VaR folgende Definition gefunden:
[mm] VaR_\alpha(X)=F_X^{-1}(\alpha). [/mm]
1. In meinem Falle also
[mm] VaR_{99%}(X)=\Phi^{-1}(0,99), [/mm] stimmt aber ja hinten und vorne nicht mit der obigen Lösung überein.
Dann hab ich noch die Definition des Quantils:Für eine Normalverteilung mit [mm] \mu [/mm] und [mm] \sigma^2 [/mm] berechnet sich das p-Quantil als
x(p) = [mm] \mu [/mm] + [mm] \sigma \cdot [/mm] z(p).
In meinem Falle also: [mm] VaR=0+\sigma \cdot \Phi(0,01). [/mm] Aber das stimmt ja auch nicht.
Wo hab ich denn da meinen Denkfehler drin?
Vielen Dank schon im Voraus!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:46 Di 01.11.2011 | Autor: | Staffan |
Hallo,
wie Du schon schreibst, wird zur Ermittlung des Value at Risk ("VaR") auf das (1 [mm] -$\alpha$) [/mm] Quantil abgestellt. Bei Wikipedia wird ein solches Quantil generell dargestellt mit $ [mm] F_X^{-1}(p) [/mm] $. Dabei ist p die Wahrscheinlichkeit bzw.das Konfidenzniveau. Der sich bei der Standardnormalverteilung ergebende Wert bei p=1% bzw. 0,01 ist dann -2,326347874 und bei 99% bzw. 0,99 gleich 2,326347874. Die Angabe in dem Buch ist daher richtig. Auch Wikipedia stimmt mit dem überein.
Bei der Verwendung von $ [mm] \Phi(0,01) [/mm] $ gemäß Deiner Definition des Quantils würde man bei dem vorgenannten Verständnis demgegenüber die Wahrscheinlichkeit des 0,01-Quantils berechnen, diese liegt bei ca. 50%. Zur Berechnung des Quantils ist $ [mm] \Phi^{-1}(0,01) [/mm] $ anzusetzen, d.h. die inverse Betrachtung der Funktion. Zur Verdeutlichung: Mit Excel berechnet man das Quantil der Standardnormalverteilung mit der Formel STANDNORMINV(p) und die Wahrscheinlicheit mit STANDNORMVERT(Quantil). Oder anders ausgedrückt: bei Verwendung einer Tabelle findet man die Wahrscheinlichkeit im Inneren der Tabelle, während die Quantile in den Randspalten stehen.
Für die Ermittlung des VaR wäre dann der Wert von ca. -2,33 z.B. bei einem Konfidenzniveau von 99% mit [mm] $\sigma\ [/mm] $, das kann die Volatilität sein, und dem Barwert eines Portfolios zu multiplizieren.
Gruß
Staffan
|
|
|
|