matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraVandermonde-Determinante
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Vandermonde-Determinante
Vandermonde-Determinante < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vandermonde-Determinante: Rechenschritt
Status: (Frage) beantwortet Status 
Datum: 15:01 Mo 17.09.2007
Autor: Wehm

Aufgabe
Man berechne die Vandermonde-Determinante [mm] V_6 [/mm] mit [mm] a_1 [/mm] = 1, [mm] a_2 [/mm] = 2, [mm] a_3 [/mm] = 4, [mm] a_4 [/mm] = 5, [mm] a_5 [/mm] = 7, [mm] a_6 [/mm] = 8


Hoi.

Die Vandermonde Determinante sieht dann ja so aus

[mm] $\vmat{ 1 & 1 & 1^2 & 1^3 & 1^4 & 1^5 \\ 1 & 2 & 2^2 & 2^3 & 2^4 & 2^5 \\ 1 & 4 & 4^2 & 4^3 & 4^4 & 4^5 \\ 1 & 5 & 5^2 & 5^3 & 5^4 & 5^5 \\ 1 & 7 & 7^2 & 7^3 & 7^4 & 7^5\\ 1 & 8 & 8^2 & 8^3 & 8^4 & 8^5\\ }$ [/mm]

Und nun weiß ich nicht, wie man auf das kommt
$ =(1*3*4*6*7)*(2*3*5*6)*(1*3*4)*(2*3)*1$

(Ergebnis 6531840)

Wie kommt man auf die ganzen Faktoren? Vielleicht liegt es an [mm] V_n [/mm] = [mm] \produkt_{i,k=1}^{n}(a_i-a_k)? [/mm]

Gruß
Wehm

        
Bezug
Vandermonde-Determinante: Antwort
Status: (Antwort) fertig Status 
Datum: 15:22 Mo 17.09.2007
Autor: angela.h.b.


> Vielleicht liegt es
> an [mm]V_n[/mm] = [mm]\produkt_{i,k=1}^{n}(a_i-a_k)?[/mm]

Wenn Du dies benutzen darfst, hast Du's doch schon.

Allerdings muß es etwas anders heißen:  [mm] \produkt_{1\le i
Gruß v. Angela

Bezug
                
Bezug
Vandermonde-Determinante: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:29 Mo 17.09.2007
Autor: Wehm


> > Vielleicht liegt es
> > an [mm]V_n[/mm] = [mm]\produkt_{i,k=1}^{n}(a_i-a_k)?[/mm]
>  
> Wenn Du dies benutzen darfst, hast Du's doch schon.

Falls nicht, was würdest du denn sonst vorschlagen?

> Allerdings muß es etwas anders heißen:  [mm]\produkt_{1\le i

Danke

Bezug
                        
Bezug
Vandermonde-Determinante: Antwort
Status: (Antwort) fertig Status 
Datum: 18:00 Mo 17.09.2007
Autor: Bastiane

Hallo Wehm!

> > > Vielleicht liegt es
> > > an [mm]V_n[/mm] = [mm]\produkt_{i,k=1}^{n}(a_i-a_k)?[/mm]
>  >  
> > Wenn Du dies benutzen darfst, hast Du's doch schon.
>  
> Falls nicht, was würdest du denn sonst vorschlagen?

Entweder diese Formel herleiten/beweisen, oder zu Fuß mit einer anderen Methode berechnen. z. B. Entwicklung nach einer Zeile/Spalte oder der []Leibniz-Formel. Aber eigentlich ist es Sinn der Vandermonde Determinante, dass man eben diese Formel anwendet, denn das ist ja so schön einfach. Und der Beweis dazu ist glaube ich "nur" ein Induktionsbeweis...

Viele Grüße
Bastiane
[cap]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]