matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikVar(X) mit X=UV
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Var(X) mit X=UV
Var(X) mit X=UV < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Var(X) mit X=UV: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:13 So 12.02.2017
Autor: Noya

Aufgabe
Seien U und V unabhängig, U gleichverteilt auf [0,1] und V gleichverteilt auf [mm] \{0,1\}. [/mm]
Berechne die Varianz von X:=UV

Hallöle ihr Lieben,

ich habe Probleme mit der Aufgabe.
[mm] Var(X)=E(X^2)-(E(X))^2 [/mm]


da U,V unabhängig ist gilt ja E(UV)=E(U)E(V)

also
[mm] Var(X)=Var(UV)=E((UV)^2)-(E(UV))^2=E(U^2V^2)-(E(U)E(V))^2 [/mm] = [mm] E(U^2)E(V^2)-E(U)^2E(V)^2 [/mm]
oder?

Nun habe ich Probleme mit der gleichverteilheit.

Auf einem Intervall [a,b] wäre ja die Dichtefkt

[mm] f_X(x)= \begin{cases} \bruch{1}{b-a}, & \mbox{für } x \in [a,b] \\ 0, & \mbox{sonst } \end{cases}, [/mm] aber [mm] \{0,1\} [/mm] ist ja eine Menge. Wie soll ich das verstehen?

[mm] f_U(u)= \begin{cases} 1, & \mbox{für } x \in [0,1] \\ 0, & \mbox{sonst } \end{cases} [/mm]

und könnte damit zb. E(U) [mm] =\integral_{-\infty}^{\infty}uf_U du=\integral^{1}_{0} [/mm] u du = 1 bestimmen

[mm] E(U^2)=\integral_{-\infty}^{\infty}u^2f_U du=\integral^{1}_{0} u^2 [/mm] du= [mm] \bruch{1}{3}. [/mm] Ist das so korrekt??
Aber ich habe Probleme mit V gleichverteilt auf [mm] \{0,1\}. [/mm]
Vielen Dank ? schönes Wochenende noch :)


        
Bezug
Var(X) mit X=UV: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 So 12.02.2017
Autor: Gonozal_IX

Hiho,

V ist eine diskrete Zufallsvariable, damit auch [mm] $V^2$. [/mm]
Wie ist der Erwartungswert einer diskreten Zufallsvariable definiert?

Wie würdest du denn den EW von V berechnen?
Was ist also der EW von [mm] $V^2$? [/mm]

> und könnte damit zb. E(U) $ [mm] =\integral_{-\infty}^{\infty}uf_U du=\integral^{1}_{0} [/mm] $ u du = 1 bestimmen

und hier schaust du dir das letzte Gleichheitszeichen noch mal an

Gruß,
Gono

Bezug
                
Bezug
Var(X) mit X=UV: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:07 So 12.02.2017
Autor: Noya


> Hiho,
>  
> V ist eine diskrete Zufallsvariable, damit auch [mm]V^2[/mm].
>  Wie ist der Erwartungswert einer diskreten Zufallsvariable
> definiert?
>  

[mm] E(X)=\sum_{i \in I}x_i P(X=x_i) [/mm]

> Wie würdest du denn den EW von V berechnen?
>  Was ist also der EW von [mm]V^2[/mm]?

habe gerade im Skript nachgeguckt, da haben wir gesagt dass der erwartungswert einer diskreten ZV  wie folgt definiert ist:

[mm] E(V)=\bruch{b-a}{2}=\bruch{1}{2} [/mm]
wobei die allg. Form auch ginge dann wäre [mm] E(X)=0*\bruch{1}{2}*1*\bruch{1}{2}=\bruch{1}{2} [/mm]

okay. [mm] P(V=0)=P(V=1)=\bruch{1}{2} [/mm] wenn nun [mm] W=V^2 [/mm] wäre würde ja trotzdem noch gelten [mm] P(X=0)=P(X=1)=\bruch{1}{2} [/mm] oder? Und somit wäre [mm] E(V^2)=E(W)=\bruch{1}{2} [/mm]  oder?

Wenn dem so wäre, dann wäre [mm] Var(UV)=\bruch{5}{48} [/mm]

>  
> > und könnte damit zb. E(U)
> [mm]=\integral_{-\infty}^{\infty}uf_U du=\integral^{1}_{0}[/mm] u du
> = 1 bestimmen
>
> und hier schaust du dir das letzte Gleichheitszeichen noch
> mal an

ach nicht aufgepasst. Danke!
[mm] E(U)=\bruch{1}{2} [/mm]

>  
> Gruß,
>  Gono


Bezug
                        
Bezug
Var(X) mit X=UV: Antwort
Status: (Antwort) fertig Status 
Datum: 16:51 So 12.02.2017
Autor: Gonozal_IX

Hiho,

> [mm]E(X)=\sum_{i \in I}x_i P(X=x_i)[/mm]

[ok]

>  
> > Wie würdest du denn den EW von V berechnen?
>  >  Was ist also der EW von [mm]V^2[/mm]?
>  
> habe gerade im Skript nachgeguckt, da haben wir gesagt dass
> der erwartungswert einer diskreten ZV  wie folgt definiert
> ist:
>  
> [mm]E(V)=\bruch{b-a}{2}=\bruch{1}{2}[/mm]
>  wobei die allg. Form auch ginge dann wäre
> [mm]E(X)=0*\bruch{1}{2}*1*\bruch{1}{2}=\bruch{1}{2}[/mm]
>  
> okay. [mm]P(V=0)=P(V=1)=\bruch{1}{2}[/mm] wenn nun [mm]W=V^2[/mm] wäre
> würde ja trotzdem noch gelten [mm]P(X=0)=P(X=1)=\bruch{1}{2}[/mm]
> oder? Und somit wäre [mm]E(V^2)=E(W)=\bruch{1}{2}[/mm]  oder?

[ok]
  

> Wenn dem so wäre, dann wäre [mm]Var(UV)=\bruch{5}{48}[/mm]

[ok]

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]