matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeVariablen brechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Gleichungssysteme" - Variablen brechnen
Variablen brechnen < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Variablen brechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:02 Di 29.11.2016
Autor: Philosophiee

Aufgabe
Bei einem Grubenunglück wird versucht, die im Schacht AB und den Hohlräumen H1 und H2 verschütteten Bergleute durch sechs vom Turm T (4/6/0) ausgehenden Rettungsbohrungen ga zu erreichen.

Daten: A (8/2/-2); B (15/16/-9); H1 (22/6/-14); H2 (12/16/-4)
ga: (Vektor) x= (4/6/0) + r (13-a/ a-4 / a-11)
a= 0,2,4,6,8,10

a) Wird der Schacht AB von einer der Bohrungen getroffen? Wenn ja, wo?
b) Werden die Hohlräume H1 und H2 gefunden?
c) Führt eine der Bohrungen senkrecht nach unten?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Für a) habe ich das Gleichungssystem 8=-7s+4+13-a×r ; 2=-14s+6+a-4×r ; -2=-7s+a-11×r aufgestellt und für r=1 raus, komme dann aber nicht weiter.

Bei b) ähnlich mit 22=4+r (13-a) ; 6=6+r (a-4) ; -14=0+r (a-11) komme da auch nicht weiter.

Und bei c) finde ich keinen Ansatz

        
Bezug
Variablen brechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 Di 29.11.2016
Autor: M.Rex

Hallo und [willkommenmr]

> Bei einem Grubenunglück wird versucht, die im Schacht AB
> und den Hohlräumen H1 und H2 verschütteten Bergleute
> durch sechs vom Turm T (4/6/0) ausgehenden
> Rettungsbohrungen ga zu erreichen.

>

> Daten: A (8/2/-2); B (15/16/-9); H1 (22/6/-14); H2
> (12/16/-4)
> ga: (Vektor) x= (4/6/0) + r (13-a/ a-4 / a-11)
> a= 0,2,4,6,8,10

>

> a) Wird der Schacht AB von einer der Bohrungen getroffen?
> Wenn ja, wo?
> b) Werden die Hohlräume H1 und H2 gefunden?
> c) Führt eine der Bohrungen senkrecht nach unten?
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

>

> Für a) habe ich das Gleichungssystem 8=-7s+4+13-a×r ;
> 2=-14s+6+a-4×r ; -2=-7s+a-11×r aufgestellt und für r=1
> raus, komme dann aber nicht weiter.

Bedenke, dass a nur die Werte 0,2,4,6,8 oder 10 annehmen kann. Als gibt es nur die Rettungsbohrungen

[mm] g_{0}:\vec{x}=\vektor{4\\6\\0}+r\cdot\vektor{13\\-4\\-11} [/mm]
[mm] g_{2}:\vec{x}=\vektor{4\\6\\0}+r\cdot\vektor{11\\-2\\-9} [/mm]
[mm] g_{4}:\vec{x}=\vektor{4\\6\\0}+r\cdot\vektor{9\\0\\-7} [/mm]
[mm] g_{6}:\vec{x}=\vektor{4\\6\\0}+r\cdot\vektor{7\\2\\-5} [/mm]
[mm] g_{8}:\vec{x}=\vektor{4\\6\\0}+r\cdot\vektor{5\\4\\-3} [/mm]
[mm] g_{10}:\vec{x}=\vektor{4\\6\\0}+r\cdot\vektor{3\\6\\-1} [/mm]

Der "Schacht AB" hat ja die Gerade
[mm] s:\vec{x}=\vektor{8\\2\\-2}+s\cdot\vektor{7\\14\\-7} [/mm]

Nun musst du prüfen, ob eine der Geraden die Schachtgerade s schneidet. Dabei darf der Wert des Geradenparameters s nur zwischen 0 und 1 liegen, denn dann wird der Schacht getroffen. Liegt der Wert für s außerhalb des Intervalles [0;1], trifft die Bohrung nur die "Fortsetzungslinie" des Schachts


>

> Bei b) ähnlich mit 22=4+r (13-a) ; 6=6+r (a-4) ; -14=0+r
> (a-11) komme da auch nicht weiter.

Auch hier prüfe, ob die Punkte [mm] H_{1} [/mm] bzw [mm] h_{2} [/mm] auf einer der Geraden liegen.

>

> Und bei c) finde ich keinen Ansatz

Wenn die Koordinaten die drei Raumrichtungen angeben, müsste, damit die Bohrung senkrecht ist, ein Richtungsvektor der Form [mm] \vektor{0\\0\\\Box} [/mm] herauskommen, denn dieser Vektor ist achsenparallel zur z-Richtung.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]