matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungVarianz bei mehrfachem Würfeln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitsrechnung" - Varianz bei mehrfachem Würfeln
Varianz bei mehrfachem Würfeln < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Varianz bei mehrfachem Würfeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:50 So 19.02.2012
Autor: MxM

Aufgabe
In einem unseriösen Spielcasino wird mit manipulierten Würfeln gespielt. Pro Runde wird mit genau 5 dieser Würfel gleichzeitig gewürfelt, anschließend wird die Augenzahl aller Würfel aufsummiert.

Ein solcher Würfel zeigt die Augenzahlen 1, 2 und 3 jeweils mit einer Wahrscheinlichkeit von (0.06), die Augenzahlen 4 und 5 mit jeweils einer Wahrscheinlichkeit von (0.2) und die Augenzahl 6 mit einer Wahrscheinlichkeit von (0.42).

Wie hoch sind der Erwartungswert und die Varianz der Augensumme?

Hallo,

den Erwartungswert habe ich raus, das ist 23,4. Was mir fehlt ist die Varianz, die in der Lösung als 11,29 angegeben ist.

Mein Vorgehen war so, dass ich die Varianz der einzelnen Würfe addiert habe. Die Kovarianz müsste ja 0 sein, da die Würfe unabhängig sind.

Die Varianz eines Wurfes habe ich berechnet als

[mm] V(X)=\summe_{i=1}^{n} (x_i [/mm] - [mm] E(X))^2= [/mm] 25,854

mit dem Erwartungswert eines einzelnen Wurfs E(X)=4,68.

Für alle 5 Würfe müsste die Varianz

[mm] V(X_1+X_2+X_2+X_3+X_4)=5*V(X)=5*25,854=129,272 [/mm]

sein, dachte ich zumindest. Die Lösung lautet aber wie erwähnt 11,29?

Schöne Grüße,
MxM


        
Bezug
Varianz bei mehrfachem Würfeln: Antwort
Status: (Antwort) fertig Status 
Datum: 13:05 So 19.02.2012
Autor: Diophant

Hallo,

deine Vorgehensweise ist prinzipiellm schon richtig, da die einzelnen Würfel stochastisch unabhängig sind. Mir kommt nur der Wert

V(X)=25,854

für die Varianz eines Wurfes erstaunlich hoch vor...

Gruß, Diophant

Bezug
                
Bezug
Varianz bei mehrfachem Würfeln: Varianzberechnung
Status: (Frage) beantwortet Status 
Datum: 15:46 So 19.02.2012
Autor: MxM

Hallo,

danke schonmal für diesen Hinweis, es scheinen also mindestens 2 Fehler drin zu sein, da ich Vergessen habe, die Summe der quadrierten Abweichungen durch n zu teilen.

Damit bleibt, mit dem Erwartungswert

[mm] E(X)=\bruch{1}{n}*\summe_{i_1}^{n}x_i*p_i [/mm] = 0,06*1 + 0,06*2 + 0,06*3 + 0,2*4 + 0,2*5 + 0,42*6 = 4,68,

die Varianz für einen Wurd bei

[mm] \sigma^2=\bruch{1}{n} \summe_{i=1}^{6}(x_i-E(X))^2 [/mm] = [mm] (1-4,68)^2 [/mm] + [mm] (2-4,68)^2 [/mm] + [mm] (3-4,68)^2 [/mm] + [mm] (4-4,68)^2 [/mm] + [mm] (5-4,68)^2 [/mm] + [mm] (6-4,68)^2) [/mm] = 4,309

Die Varianz für 5 Würfe wäre damit 5*4,309=21,545 und daher immernoch höher als die Lösung. Wo liegt der zweite Fehler?


Bezug
                        
Bezug
Varianz bei mehrfachem Würfeln: Antwort
Status: (Antwort) fertig Status 
Datum: 16:32 So 19.02.2012
Autor: vivo

Hallo,

warum nimmst du bei der Varianzberechnung nicht mit der jeweiligen W.-keit mal?

Gruß

Bezug
                                
Bezug
Varianz bei mehrfachem Würfeln: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:52 So 19.02.2012
Autor: MxM

Ah, alles klar, danke, hatte ja die Summe der quadratischen Abweichungen durch n geteilt, was ja nur bei Stichproben richtig ist (?). Mit den jeweiligen Wahrscheinlichkeiten und ihne das 1/n geht es. Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]