matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenmathematische StatistikVarianzberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "mathematische Statistik" - Varianzberechnung
Varianzberechnung < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Varianzberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:21 Mi 06.03.2013
Autor: Owen

Aufgabe
Gegeben seien folgende Aktienkurse und prozentuale Renditen:

[mm] \vmat{ i & & Y-AG & Renditen & A-AG & Renditen\\ 14 & Nov 10 & 56,3 & 9,2992 & 282,07 & -0,0523\\ 13 & Okt 10 & 51,51 & 0,1361 & 282,22 & 20,5188 \\ 12 & Sept 10 & 51,44 & 23,4461 & 234,17 & -14,5104 \\ 11 & Aug 10 & 41,67 & 0,8715 & 273,92 & -0,8551 \\ 10 & Jul 10 & 41,31 & 3,1203 & 276,28 & 8,9372 \\ 9 & Jun 10 & 40,06 & 5,5043 & 253,61 & 3,1797 \\ 8 & Mai 10 & 37,97 & 3,0393 & 245,80 & 16,1169 \\ 7 & April 10 & 36,85 & 8,6380 & 211,68 & 14,8111 \\ 6 & März 10 & 33,92 & 14,7497 & 184,37 & -1,4543 \\ 5 & Febr 10 & 29,56 & -3,8074 & 187,10 & 28,8783 \\ 4 & Jan 10 & 30,73 & -2,6299 & 145,17 & 9,6247 \\ 3 & Dez 09 & 31,56 & 1,1863 & 132,43 & 2,7751 \\ 2 & Nov 09 & 31,19 & -5,5993 & 128,85 & 60,0002 \\ 1 & Okt 09 & 33,04 & & 80,53 & } [/mm]

Erstellen Sie die Varianz-Kovarianz Matrix der beiden AG's


Hallo Leute,

mir ist grundsätzlich das Vorgehen hierbei klar. Bei den Lösungshinweisen steht Folgendes:

[mm] \summe_{i=1}^{n} R_{i, Y-AG}= [/mm] 0,5795
[mm] \summe_{i=1}^{n} (R_{i, Y-AG}-\overline{R_{Y-AG}})^{2}= [/mm] 0,0774
[mm] \summe_{i=1}^{n} R_{i, A-AG}= [/mm] 1,4797
[mm] \summe_{i=1}^{n} (R_{i, A-AG}-\overline{R_{A-AG}})^{2}= [/mm] 0,4054
[mm] \summe_{i=1}^{n} (R_{i, Y-AG}-\overline{R_{Y-AG}})(R_{i, A-AG}-\overline{R_{A-AG}})= [/mm] -0,1265

Bleiben wir mal zunächst bei der Y-AG. Den Wert 0,5795 kann ich nachvollziehen. Das ist die aufsummierte Rendite. Wie aber kommt man auf den Wert 0,0774? Dies ist der Wert den man ja zur Bestimmung der Varianz braucht. Wenn ich aber die Varianz gemäß der Summenformel ausrechnen möchte, so gehe ich doch zunächst im ersten Schritt folgendermaßen vor:
[mm] \overline{R_{Y-AG}}=\bruch{0,5795}{13})= [/mm] 0,0446

[mm] (0,092992-0,0446)^{2}+ (0,001361-0,0446)^{2}+....... [/mm]
Aber da ist es doch schon ersichtlich, dass zum Schluss keine 0,0774 rauskommen bei der Rechnung, wenn man alle 13 Werte summiert.

        
Bezug
Varianzberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:13 Mi 06.03.2013
Autor: MathePower

Hallo Owen,

> Gegeben seien folgende Aktienkurse und prozentuale
> Renditen:
>  
> [mm]\vmat{ i & & Y-AG & Renditen & A-AG & Renditen\\ 14 & Nov 10 & 56,3 & 9,2992 & 282,07 & -0,0523\\ 13 & Okt 10 & 51,51 & 0,1361 & 282,22 & 20,5188 \\ 12 & Sept 10 & 51,44 & 23,4461 & 234,17 & -14,5104 \\ 11 & Aug 10 & 41,67 & 0,8715 & 273,92 & -0,8551 \\ 10 & Jul 10 & 41,31 & 3,1203 & 276,28 & 8,9372 \\ 9 & Jun 10 & 40,06 & 5,5043 & 253,61 & 3,1797 \\ 8 & Mai 10 & 37,97 & 3,0393 & 245,80 & 16,1169 \\ 7 & April 10 & 36,85 & 8,6380 & 211,68 & 14,8111 \\ 6 & März 10 & 33,92 & 14,7497 & 184,37 & -1,4543 \\ 5 & Febr 10 & 29,56 & -3,8074 & 187,10 & 28,8783 \\ 4 & Jan 10 & 30,73 & -2,6299 & 145,17 & 9,6247 \\ 3 & Dez 09 & 31,56 & 1,1863 & 132,43 & 2,7751 \\ 2 & Nov 09 & 31,19 & -5,5993 & 128,85 & 60,0002 \\ 1 & Okt 09 & 33,04 & & 80,53 & }[/mm]
>  
> Erstellen Sie die Varianz-Kovarianz Matrix der beiden AG's
>  
> Hallo Leute,
>  
> mir ist grundsätzlich das Vorgehen hierbei klar. Bei den
> Lösungshinweisen steht Folgendes:
>  
> [mm]\summe_{i=1}^{n} R_{i, Y-AG}=[/mm] 0,5795
>  [mm]\summe_{i=1}^{n} (R_{i, Y-AG}-\overline{R_{Y-AG}})^{2}=[/mm]
> 0,0774
>  [mm]\summe_{i=1}^{n} R_{i, A-AG}=[/mm] 1,4797
>  [mm]\summe_{i=1}^{n} (R_{i, A-AG}-\overline{R_{A-AG}})^{2}=[/mm]
> 0,4054
>  [mm]\summe_{i=1}^{n} (R_{i, Y-AG}-\overline{R_{Y-AG}})(R_{i, A-AG}-\overline{R_{A-AG}})=[/mm]
> -0,1265
>  
> Bleiben wir mal zunächst bei der Y-AG. Den Wert 0,5795
> kann ich nachvollziehen. Das ist die aufsummierte Rendite.
> Wie aber kommt man auf den Wert 0,0774? Dies ist der Wert
> den man ja zur Bestimmung der Varianz braucht. Wenn ich
> aber die Varianz gemäß der Summenformel ausrechnen
> möchte, so gehe ich doch zunächst im ersten Schritt
> folgendermaßen vor:
>  [mm]\overline{R_{Y-AG}}=\bruch{0,5795}{13})=[/mm] 0,0446
>  
> [mm](0,092992-0,0446)^{2}+ (0,001361-0,0446)^{2}+.......[/mm]
> Aber da ist es doch schon ersichtlich, dass zum Schluss
> keine 0,0774 rauskommen bei der Rechnung, wenn man alle 13
> Werte summiert.


Das ist ein Irrtum, denn

[mm](0,092992-0,0446)^{2}+ (0,001361-0,0446)^{2} \approx 0,0042[/mm]


Gruss
MathePower

Bezug
                
Bezug
Varianzberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:01 Mi 06.03.2013
Autor: Owen

Achso, gut, dann ist es klar. Dankesehr.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]