matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenVariation der Konstanten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Variation der Konstanten
Variation der Konstanten < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Variation der Konstanten: Korrektur
Status: (Frage) beantwortet Status 
Datum: 22:17 Fr 05.11.2010
Autor: Mija

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Sei I ein offenes Intervall, und sei $A= \pmat{ a_{11} & a_{12} \\ a_{21} & a_{22} } : I \to Mat(2,2,\IR)$ stetig. Sei $\varphi : I \to \IR^2$ eine Lösung zu $\dot \varphi(t) = A(t)\varphi(t)$ mit $\varphi_1(t) \not= 0$ für alle $t \in I$.
Zeigen Sie: Sind $g, u: I \to \IR$ Lösungen zu $g'(t) = (a_{22} - \bruch{a_{12}}{\varphi_1}*\varphi_2)(t)*g(t)$ bzw. $u'(t) = \bruch{a_{12}}{\varphi_1}(t)*g(t)$, so erfüllt
\psi : I \ni t \mapsto u(t)\varphi(t) + \vektor{0 \\ g(t)} \in \IR^2$
ebenfalls $\dot \psi(t) = A(t)\psi(t)$, und falls $g \not= 0$ gilt, so ist \{\varphi,\psi\}$ eine Basis des Lösungsraumes.


Nun zur eigentlichen Aufgabe:

Wir betrachten die DGL (L)

$\dot \varphi(t) = \pmat{ -1 & \bruch{1}{t} \\ 1-t & 1 }*\varphi(t) + \vektor{ln(t)+\bruch{1}{t} \\ (t-1)*ln(t)}$
für $\varphi : (0,\infty) \to \IR^2$. Eine Lösung der zugehörigen homogenen Gleichung ist $\varphi(t) := \vektor{1 \\ t}$.
Bestimmen Sie mit Hilfe von obiger Aufgabe eine Fundamentalmatrix und anschließend alle Lösungen von (L).


Ich habe für die letzte Aufgabe Eigenwerte für $A(t)$ von $\lambda_1 = -\bruch{1}{\wurzel{t}}$ und $\lambda_2 = \bruch{1}{\wurzel{t}}$ heraus.
Damit komme ich zu der Fundamentalmatrix $\pmat{ \bruch{1}{( \wurzel{t}-1)* \wurzel{t}} & \bruch{1}{(\wurzel{t}+1)*\wurzel{t} \\ 1 & 1 }$
Stimmt das?

(Wenn ich die Lösungen per Variation der Konstanten herausbekommen möchte, komme ich auf total wirre und ewig lange Werte..)

        
Bezug
Variation der Konstanten: Antwort
Status: (Antwort) fertig Status 
Datum: 23:05 Fr 05.11.2010
Autor: MathePower

Hallo Mija,

> Sei I ein offenes Intervall, und sei [mm]A= \pmat{ a_{11} & a_{12} \\ a_{21} & a_{22} } : I \to Mat(2,2,\IR)[/mm]
> stetig. Sei [mm]\varphi : I \to \IR^2[/mm] eine Lösung zu [mm]\dot \varphi(t) = A(t)\varphi(t)[/mm]
> mit [mm]\varphi_1(t) \not= 0[/mm] für alle [mm]t \in I[/mm].
>  Zeigen Sie:
> Sind [mm]g, u: I \to \IR[/mm] Lösungen zu [mm]g'(t) = (a_{22} - \bruch{a_{12}}{\varphi_1}*\varphi_2)(t)*g(t)[/mm]
> bzw. [mm]u'(t) = \bruch{a_{12}}{\varphi_1}(t)*g(t)[/mm], so
> erfüllt
>  [mm]\psi[/mm] : I [mm]\ni[/mm] t [mm]\mapsto u(t)\varphi(t)[/mm] + [mm]\vektor{0 \\ g(t)} \in \IR^2$[/mm]
>  
> ebenfalls [mm]$\dot \psi(t)[/mm] = [mm]A(t)\psi(t)$,[/mm] und falls $g [mm]\not=[/mm]
> 0$ gilt, so ist [mm]\{\varphi,\psi\}$[/mm] eine Basis des
> Lösungsraumes.
>  
>
> Nun zur eigentlichen Aufgabe:
>  
> Wir betrachten die DGL (L)
>  
> [mm]\dot \varphi(t) = \pmat{ -1 & \bruch{1}{t} \\ 1-t & 1 }*\varphi(t) + \vektor{ln(t)+\bruch{1}{t} \\ (t-1)*ln(t)}[/mm]
>  
> für [mm]\varphi : (0,\infty) \to \IR^2[/mm]. Eine Lösung der
> zugehörigen homogenen Gleichung ist [mm]\varphi(t) := \vektor{1 \\ t}[/mm].
>  
> Bestimmen Sie mit Hilfe von obiger Aufgabe eine
> Fundamentalmatrix und anschließend alle Lösungen von
> (L).
>  
> Ich habe für die letzte Aufgabe Eigenwerte für [mm]A(t)[/mm] von
> [mm]\lambda_1 = -\bruch{1}{\wurzel{t}}[/mm] und [mm]\lambda_2 = \bruch{1}{\wurzel{t}}[/mm]
> heraus.
>  Damit komme ich zu der Fundamentalmatrix [mm]\pmat{ \bruch{1}{( \wurzel{t}-1)* \wurzel{t}} & \bruch{1}{(\wurzel{t}+1)*\wurzel{t} \\ 1 & 1 }[/mm]
>  
> Stimmt das?


Leider nein.

Für die zweite Lösung des DGL-Systems

[mm]\dot \varphi(t) = \pmat{ -1 & \bruch{1}{t} \\ 1-t & 1 }*\varphi(t)[/mm]

machst Du den Ansatz

[mm]\varphi\left(t\right)=u\left(t\right)*\pmat{1 \\ t}+\pmat{0 \\ g\left(t\right)}[/mm]

Dies führt dann auf das neue DGL-System:

[mm]\pmat{0 \\ g'\left(t\right)}=\pmat{ -1 & \bruch{1}{t} \\ 1-t & 1 }*\pmat{0 \\ g\left(t\right)}-u'\left(t\right)*\pmat{1 \\ t}[/mm]

So, jetzt versuche die zweite Lösung des
homogenen DGL-Systems zu ermitteln.


>  
> (Wenn ich die Lösungen per Variation der Konstanten
> herausbekommen möchte, komme ich auf total wirre und ewig
> lange Werte..)


Gruss
MathePower

Bezug
                
Bezug
Variation der Konstanten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:34 Fr 05.11.2010
Autor: Mija

Ich habe jetzt das Gleichungssystem mit u'(t) und g'(t) aus der oberen Aufgabe gelöst und bin auf
$g(t)=0$ und $g'(t)=0$
gekommen.
Kann ich damit was anfangen?

Bezug
                        
Bezug
Variation der Konstanten: Antwort
Status: (Antwort) fertig Status 
Datum: 15:20 Sa 06.11.2010
Autor: MathePower

Hallo Mija,

> Ich habe jetzt das Gleichungssystem mit u'(t) und g'(t) aus
> der oberen Aufgabe gelöst und bin auf
>  [mm]g(t)=0[/mm] und [mm]g'(t)=0[/mm]
>  gekommen.
>  Kann ich damit was anfangen?


Mit der DGL

[mm]g'\left(t\right)=0[/mm]

kannst Du was anfangen.

Dies jetzt integrieren, liefert g(t).

Damit bestimmst Du gemäß

[mm]u'\left(t\right)=\bruch{1}{t}*g\left(t\right)[/mm]

die Funktion u(t).

Dies alles setzt Du jetzt in den Ansatz

[mm]\varphi\left(t\right)=u\left(t\right)*\pmat{1 \\ t}+\pmat{0 \\ g(t\right)}[/mm]

ein, und erhältst so die zweite Lösung des homogenen DGL-Systems.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]