matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenVektor c
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Vektoren" - Vektor c
Vektor c < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektor c: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:35 Mi 11.10.2006
Autor: wiczynski777

Aufgabe
Gegeben sind die Vektoren: a=(3  -1,5   0) b=(0  1  2)
Bestimmen Sie einen Vektor c so, dass c [mm] \perp [/mm] a und c [mm] \perp [/mm] b sowie Betrag |c| = [mm] 2\wurzel{6} [/mm] gilt.
Lösung: c=(-2   -4   2) oder c=(2   4   -2)

Habe das Kreuzprodukt a kreuz b gebildet aber ich komme nicht auf das Ergebnis in der Lösung. Ich weiss nicht was ich mit [mm] |c|=2\wurzel{6} [/mm] anfangen soll. Hat jemand eine Idee?

        
Bezug
Vektor c: Antwort
Status: (Antwort) fertig Status 
Datum: 20:45 Mi 11.10.2006
Autor: Bastiane


> Gegeben sind die Vektoren: a=(3  -1,5   0) b=(0  1  2)
>  Bestimmen Sie einen Vektor c so, dass c [mm]\perp[/mm] a und c
> [mm]\perp[/mm] b sowie Betrag |c| = [mm]2\wurzel{6}[/mm] gilt.
>  Lösung: c=(-2   -4   2) oder c=(2   4   -2)
>  Habe das Kreuzprodukt a kreuz b gebildet aber ich komme
> nicht auf das Ergebnis in der Lösung. Ich weiss nicht was
> ich mit [mm]|c|=2\wurzel{6}[/mm] anfangen soll. Hat jemand eine
> Idee?

Hallo!

Mit dem Kreuzprodukt kannst du es sicher auch machen, da musst du dann aber das Ergebnis, dass du da erstmal rausbekommst, noch durch irgendwas teilen, damit das mit dem Betrag hinkommt. Und ich weiß gerade irgendwie nicht, wie man das am besten macht.
Du kannst es aber auch anders machen, und zwar bedeutet senkrecht sein ja, dass das Skalarprodukt =0 ist. Es muss also gelten:

[mm] $\vec{a}*\vec{c}=0$ [/mm]
und [mm] $\vec{b}*\vec{c}=0$ [/mm]

Schreiben wir [mm] \vec{c}=\vektor{c_1\\c_2\\c_3} [/mm] dann muss außerdem noch gelten:
[mm] \wurzel{c_1^2+c_2^2+c_3^2}=2\wurzel{6} [/mm] und damit hast du ein LGS das du nur noch lösen musst.

Hilft dir das?

Viele Grüße
Bastiane
[cap]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]