matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesVektoranalysis-Kugelkoordinate
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Sonstiges" - Vektoranalysis-Kugelkoordinate
Vektoranalysis-Kugelkoordinate < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektoranalysis-Kugelkoordinate: Darstellungshilfe
Status: (Frage) beantwortet Status 
Datum: 11:39 Fr 19.06.2015
Autor: mathephysik01

Aufgabe
Jedem Koordinatentripel (r, [mm] \alpha, \beta) [/mm] werde auf folgende Weise ein Punkt im 3D euklidischen Raum zugeordnet:

r(r, [mm] \alpha, \beta) [/mm] = [mm] \vektor{x \\ y \\ z} [/mm] = [mm] \vektor{rcos(\alpha)cos(\beta) \\ rsin(\alpha)cos(\beta) \\ rsin(\beta)} [/mm]

a) Was bedeuten r, [mm] \alpha [/mm] und [mm] \beta [/mm] geometrisch? Fertigen Sie eine Skizze an. Zeichnen Sie auch einige Koordinatenlinien ein (Linien, auf denen zwei der drei Koordinaten konstant sind.)

Hallo zusammen:)

Habe kein spezielles Forum zur Vektoranalysis gefunden deswegen habe ich es hier rein geschrieben.

Wenn die Darstellung durch die 'normalen' Kugelkoordinaten gegeben wäre, wäre die Aufgabe für mich weitaus leichter. Ich komme leider nicht auf die Idee, wo die beiden Winkel liegen müssen damit x, y, z anders ausgedrückt werden können.
Also es ist ja prinzipiell am praktischsten erstmal mit der z Komponente anzufangen, weil diese ja am leichtesten ist.
Normalerweise ist ja der Winkel [mm] \alpha [/mm] zwischen der positiven z -Achse und dem Radius r. Hier wäre jetzt meine Überlegung, ob es eventuell stimmen könnte, wenn es nun der Winkel zwischen der positiven y Achse und r sein könnte. Laut Zeichnung müsste es stimmen.
(Mein Koordinatensystem: nach 'oben' z, zur seite y, aus der Ebene heraus 'x')

Kann man hier auch Fotos posten? Dann wäre die Darstellung ein wenig leichter.

Übrigens habe ich hier nur Alpha und Beta genommen, weil es nichts anderes gegeben hat. 'Normalerweise' sind es natürlich andere.

Wenn der Ansatz stimmen sollte, wäre ich trotzdem noch sehr dankbar, wenn man mir mit dem anderen Winkel helfen könnte noch!

Lieben Dank im Voraus :)


        
Bezug
Vektoranalysis-Kugelkoordinate: Antwort
Status: (Antwort) fertig Status 
Datum: 21:53 Fr 19.06.2015
Autor: chrisno


> Jedem Koordinatentripel (r, [mm]\alpha, \beta)[/mm] werde auf
> folgende Weise ein Punkt im 3D euklidischen Raum
> zugeordnet:
>
> r(r, [mm]\alpha, \beta)[/mm] = [mm]\vektor{x \\ y \\ z}[/mm] =  [mm]\vektor{rcos(\alpha)cos(\beta) \\ rsin(\alpha)cos(\beta) \\ rsin(\beta)}[/mm]
>  
> .....
> Also es ist ja prinzipiell am praktischsten erstmal mit der
> z Komponente anzufangen, weil diese ja am leichtesten ist.
> Normalerweise ist ja der Winkel [mm]\alpha[/mm] zwischen der
> positiven z -Achse und dem Radius r.

Die z-Komponente ist $r [mm] \sin \beta$. [/mm]
Für [mm] $\beta [/mm] = 0$ ergibt sich $z = 0$. Für [mm] $\beta [/mm] = 90°$ ergibt sich $z = r$.

> Hier wäre jetzt meine
> Überlegung, ob es eventuell stimmen könnte, wenn es nun
> der Winkel zwischen der positiven y Achse und r sein
> könnte. Laut Zeichnung müsste es stimmen.
>  (Mein Koordinatensystem: nach 'oben' z, zur seite y, aus
> der Ebene heraus 'x')

nicht ganz, es ist der Winkel zur x-y-Ebene, der Winkel, den Du erhältst, wenn Du den "normalen" Winkel fortsetzt und zu 90° ergänzt. Er kann auch beschrieben werden als der Winkel zwischen dem Vektor und der Projektion des Vektors aus die x-y-Ebene.

>  
> Kann man hier auch Fotos posten? Dann wäre die Darstellung
> ein wenig leichter.

klick auf Bild-Anhang und füge den Text ein. So ein Bild sollte nicht mehr als 600 Pixel haben, sonst platzt mein Bildschirm. Der Rest passiert, nachdem Du auf senden geklickt hast.

>  
> Übrigens habe ich hier nur Alpha und Beta genommen, weil
> es nichts anderes gegeben hat. 'Normalerweise' sind es
> natürlich andere.

Es gibt hier allerliebste andere griechische Buchstaben, statt alpha schreibe an der stelle rho oder eta ...

>  
> Wenn der Ansatz stimmen sollte, wäre ich trotzdem noch
> sehr dankbar, wenn man mir mit dem anderen Winkel helfen
> könnte noch!

Spiel das entsprechend durch mit alpha = 0 und 90°.

>
> Lieben Dank im Voraus :)
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]