matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenHochschulPhysikVektoranalysis
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "HochschulPhysik" - Vektoranalysis
Vektoranalysis < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektoranalysis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:59 So 28.11.2010
Autor: m51va

hi liebe leude,
ich habe ein probelm und zwar gehts um
[mm] $\operatorname{rot} (\vec{f}\times \vec{g}) [/mm] = ( [mm] \vec{g}\cdot \operatorname{grad})\vec{f} [/mm] - [mm] (\vec{f}\cdot \operatorname{grad})\vec{g} [/mm] + [mm] \vec{f}(\operatorname{div}\vec{g}) [/mm] - [mm] \vec{g}(\operatorname{div}\vec{f})$ [/mm]
beim meinem Problem gehts auch nicht um den Beweis dieser aussage sondern einfach nur ums verständnis. Wie liest man  [mm] $(\vec{g}\cdot \operatorname{grad})\vec{f}$? [/mm] ich kenne das eigentlich so, dass hinter den Differentialoperator immer das steht auf was er angewendet werden soll. Ich würde es daher als [mm] $\vec{g}\cdot \operatorname{grad} \vec{f}$ [/mm] interpretieren. Da kommt dann aber gleich die nächste frage, der Gradient eines Vektors ist doch eine Matrix oder nicht? das haut mit dem physikalischen Hintergrund zu der Aufgabe nicht hin.

        
Bezug
Vektoranalysis: Antwort
Status: (Antwort) fertig Status 
Datum: 17:36 So 28.11.2010
Autor: rainerS

Hallo!

> hi liebe leude,
>  ich habe ein probelm und zwar gehts um
>  [mm]\operatorname{rot} (\vec{f}\times \vec{g}) = ( \vec{g}\cdot \operatorname{grad})\vec{f} - (\vec{f}\cdot \operatorname{grad})\vec{g} + \vec{f}(\operatorname{div}\vec{g}) - \vec{g}(\operatorname{div}\vec{f})[/mm]
>  
> beim meinem Problem gehts auch nicht um den Beweis dieser
> aussage sondern einfach nur ums verständnis. Wie liest man
>  [mm](\vec{g}\cdot \operatorname{grad})\vec{f}[/mm]? ich kenne das
> eigentlich so, dass hinter den Differentialoperator immer
> das steht auf was er angewendet werden soll. Ich würde es
> daher als [mm]\vec{g}\cdot \operatorname{grad} \vec{f}[/mm]
> interpretieren.

Richtig.

> Da kommt dann aber gleich die nächste
> frage, der Gradient eines Vektors ist doch eine Matrix oder
> nicht?

Ja, und wenn du die von links mit dem Vektor [mm] $\vec{g}$ [/mm] multiplizierst, kommt wieder ein Vektor raus.

> das haut mit dem physikalischen Hintergrund zu der
> Aufgabe nicht hin.

Wieso nicht?

Viele Grüße
   Rainer

Bezug
                
Bezug
Vektoranalysis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:29 So 28.11.2010
Autor: m51va

Aufgabe
Das Potential eines magnetischen Dipols ist gegeben durch [mm] \vec{A}(\vec{r}) [/mm] = [mm] \bruch{\mu_0}{4\pi}\cdot \bruch{\vec{m}\times\vec{r}}{|\vec{r}|^3}. [/mm] Zeigen sie dass sich das magnetische Feld [mm] \vec{B} [/mm] des Dipols wie folgt darstellen lässt:
[mm] \vec{B}(\vec{r}) [/mm] = [mm] -\bruch{\mu_0}{4\pi |\vec{r}|^3}\left( \vec{m} - 3(\vec{m}\cdot\vec{r})\cdot \bruch{\vec{r}}{|\vec{r}|^2} \right) [/mm]

das war die ursprüngliche aufgabe.
für das Magnetfeld B muss ich die Rotation von A berechnen, also
[mm] \vec{B}(\vec{r}) [/mm] = [mm] \bruch{\mu_0}{4\pi}\cdot \operatorname{rot}\left( \bruch{\vec{m}\times\vec{r}}{|\vec{r}|^3} \right). [/mm]
dann die produktregel
[mm] =\bruch{\mu_0}{4\pi}\cdot \left( \bruch{1}{|\vec{r}|^3}\cdot \operatorname{rot}(\vec{m}\times \vec{r}) + \operatorname{grad}\bruch{1}{|\vec{r}|^3}\times(\vec{m}\times\vec{r}\right) [/mm]
den letzten term kann ich berechnen. bei dem ersten term habe ich die oben verwendete formel genommen.


> Ja, und wenn du die von links mit dem Vektor [mm]\vec{g}[/mm]
> multiplizierst, kommt wieder ein Vektor raus.

aber ich kann eine matrix von links doch nur mit einem Spaltenvektor multiplizieren! [mm] \vec{g} [/mm] oder nachher mit meinen bezeichnungen von oben [mm] \vec{m} [/mm] ist aber in Zeilenvektor... m ist das magnetsiche moment


Bezug
                        
Bezug
Vektoranalysis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:04 So 28.11.2010
Autor: rainerS

Hallo!

> Das Potential eines magnetischen Dipols ist gegeben durch
> [mm]\vec{A}(\vec{r})[/mm] = [mm]\bruch{\mu_0}{4\pi}\cdot \bruch{\vec{m}\times\vec{r}}{|\vec{r}|^3}.[/mm]
> Zeigen sie dass sich das magnetische Feld [mm]\vec{B}[/mm] des
> Dipols wie folgt darstellen lässt:
>  [mm]\vec{B}(\vec{r})[/mm] = [mm]-\bruch{\mu_0}{4\pi |\vec{r}|^3}\left( \vec{m} - 3(\vec{m}\cdot\vec{r})\cdot \bruch{\vec{r}}{|\vec{r}|^2} \right)[/mm]
>  
> das war die ursprüngliche aufgabe.
>  für das Magnetfeld B muss ich die Rotation von A
> berechnen, also
>  [mm]\vec{B}(\vec{r})[/mm] = [mm]\bruch{\mu_0}{4\pi}\cdot \operatorname{rot}\left( \bruch{\vec{m}\times\vec{r}}{|\vec{r}|^3} \right).[/mm]
>  
> dann die produktregel
>  [mm]=\bruch{\mu_0}{4\pi}\cdot \left( \bruch{1}{|\vec{r}|^3}\cdot \operatorname{rot}(\vec{m}\times \vec{r}) + \operatorname{grad}\bruch{1}{|\vec{r}|^3}\times(\vec{m}\times\vec{r}\right)[/mm]

>

> den letzten term kann ich berechnen. bei dem ersten term
> habe ich die oben verwendete formel genommen.

Genau. Da [mm] $\vec{m}$ [/mm] konstant und [mm] $\operatorname{grad}\vec{r}$ [/mm] die Einheitsmatrix [mm] $\mathbf{1}$ [/mm] ist:

[mm] \operatorname{rot}(\vec{m}\times \vec{r}) = ( \vec{r}\cdot \operatorname{grad})\vec{m} - (\vec{m}\cdot \operatorname{grad})\vec{r} + \vec{m}(\operatorname{div}\vec{r}) - \vec{r}(\operatorname{div}\vec{m}) = -\vec{m} * \mathbf{1} +3\vec{m}= 2\vec{m} [/mm] .

> > Ja, und wenn du die von links mit dem Vektor [mm]\vec{g}[/mm]
> > multiplizierst, kommt wieder ein Vektor raus.
>  
> aber ich kann eine matrix von links doch nur mit einem
> Spaltenvektor multiplizieren! [mm]\vec{g}[/mm] oder nachher mit
> meinen bezeichnungen von oben [mm]\vec{m}[/mm] ist aber in
> Zeilenvektor

Also erst einmal ist es umgekehrt: von links mit einer Zeile, von rechts mit einer Spalte. Und in der von dir verwendeten Formel steht das [mm] $\vec{g}$ [/mm] links vom Skalarprodukt [mm] $\cdot$, [/mm] ist also als Zeile gemeint.

Viele Grüße
   Rainer

Bezug
                                
Bezug
Vektoranalysis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:21 So 28.11.2010
Autor: m51va


> Genau. Da [mm]\vec{m}[/mm] konstant und [mm]\operatorname{grad}\vec{r}[/mm]
> die Einheitsmatrix [mm]\mathbf{1}[/mm] ist:

dass  [mm]\operatorname{grad}\vec{r}[/mm]  die Einheitsmatrix [mm]\mathbf{1}[/mm] ist ist mir klar.

> [mm]\operatorname{rot}(\vec{m}\times \vec{r}) = ( \vec{r}\cdot \operatorname{grad})\vec{m} - (\vec{m}\cdot \operatorname{grad})\vec{r} + \vec{m}(\operatorname{div}\vec{r}) - \vec{r}(\operatorname{div}\vec{m}) = -\vec{m} * \mathbf{1} +3\vec{m}= 2\vec{m}[/mm]

damit hab ich noch schwierigkeiten: [mm] -\vec{m} [/mm] * [mm] \mathbf{1} [/mm]
m ist doch ein spaltenvektor. wie kann ich den denn mit einer matrix multiplizieren? wenn m zeilenvektor ist wäre (meiner ansicht nach) alles oaky... aber so... kannst du das vielleicht nochma erläutern

> Also erst einmal ist es umgekehrt: von links mit einer
> Zeile, von rechts mit einer Spalte. Und in der von dir
> verwendeten Formel steht das [mm]\vec{g}[/mm] links vom
> Skalarprodukt [mm]\cdot[/mm], ist also als Zeile gemeint.

sorry ich hab grad zeilen- und spaltenvektor verwechselt.


Bezug
                                        
Bezug
Vektoranalysis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:56 So 28.11.2010
Autor: mathfunnel

Hallo m51va,

mir scheint es erwähnenswert, dass es auch folgende Sichtweise gibt:

[mm] $(\vec{g}\cdot \vec{\nabla})\vec{f} [/mm] = [mm] (g_x\cdot \partial_x [/mm] + [mm] g_y\cdot \partial_y+ g_z\cdot \partial_z)\vec{f}= [/mm]
[mm] \begin{pmatrix} (g_x\cdot \partial_x + g_y\cdot \partial_y+ g_z\cdot \partial_z) f_x \\ (g_x\cdot \partial_x + g_y\cdot \partial_y+ g_z\cdot \partial_z) f_y\\ (g_x\cdot \partial_x + g_y\cdot \partial_y+ g_z\cdot \partial_z) f_z \end{pmatrix}$ [/mm]

Dabei wird [mm] $(\vec{g}\cdot \vec{\nabla})$ [/mm] als skalare Größe und [mm] '$\cdot$' [/mm] als Skalarprodukt aufgefasst.
[mm] $(\vec{g}\cdot \vec{\nabla})\vec{f}$ [/mm] liest sich also als Skalar mal Vektor.

LG mathfunnel


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]