Vektoren < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:55 Fr 15.09.2006 | Autor: | crecka |
Aufgabe | Geben Sie alle Situationen an, in denen für die Längen von Skalar und Vektorenprodukt zweier Vektoren a,b die folgende Gleichung gilt:
[mm] \left| \left( -2a \right)b\right| [/mm] = [mm] \left|ax\left(2b\right) \right| [/mm] |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt!
Da ich mich schonmal auf meine Mathekurse im Studium vorbereiten möchte, hoffe ich Ihr könnt mir bei meinem Problem helfen. Denn auch keine Lektüre verschafft mir Klarheit und alles knobeln hilft nichts mehr! Ich habe zwar schon mit Vektoren gerechnet, aber nicht in so einem Maße!
p.s.In der Aufgabe müsste über jedem a und b ein Pfeil stehn. Habe ich leider nicht geschafft darüberzusetzen:o((
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:30 Fr 15.09.2006 | Autor: | crecka |
Ich bin mir ziemlich sicher, dass das x ein vektorprdukt ist! Die Aufgabe habe ich aus einer alten Klausur. Die habe ich zum reinschnuppern bekommen,aber leider ohne Lösung:o((
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 04:01 Sa 16.09.2006 | Autor: | Fulla |
hi crecka!
ich benutze folgende formeln (die du auf wikipedia nachschlagen kannst):
[mm](\lambda \overrightarrow{x})*\overrightarrow{y}=\lambda*(\overrightarrow{x}*\overrightarrow{y})[/mm] das ist das skalarprodukt
[mm]\overrightarrow{x}\times(\lambda*\overrightarrow{y})=\lambda*(\overrightarrow{x}\times\overrightarrow{y})[/mm] und das das kreuzprodukt
--> das heißt, man kann reelle zahlen [mm] \lambda [/mm] aus dem produkt "rausziehen"
[mm]|\overrightarrow{x}*\overrightarrow{y}|=|\overrightarrow{x}|*|\overrightarrow{y}|*cos(\phi)[/mm] das hinten ist der winkel zwischen den beiden vektoren...
[mm]|\overrightarrow{x}\times\overrightarrow{y}|=|\overrightarrow{x}|*|\overrightarrow{y}|*sin(\phi)[/mm]
so, jetzt kanns losgehen!
[mm] \quad[/mm] [mm]|(-2\overrightarrow{a})*\overrightarrow{b}|=|\overrightarrow{a}\times2\overrightarrow{b}|[/mm]
[mm] \gdw[/mm] [mm]|-2*(\overrightarrow{a}*\overrightarrow{b})|=|2*(\overrightarrow{a}\times\overrightarrow{b})|[/mm]
[mm] \gdw 2*|\overrightarrow{a}*\overrightarrow{b}|=2*|\overrightarrow{a}\times\overrightarrow{b}|
[/mm]
[mm] \gdw |\overrightarrow{a}*\overrightarrow{b}|=|\overrightarrow{a}\times\overrightarrow{b}|
[/mm]
[mm] \gdw |\overrightarrow{a}|*|\overrightarrow{b}|*\cos(\phi)=|\overrightarrow{a}|*|\overrightarrow{b}|*\sin(\phi) [/mm]
[mm] \gdw \cos(\phi)=\sin(\phi)
[/mm]
[mm] \gdw \phi=\bruch{2k-1}{4}*\pi
[/mm]
also [mm]\phi=45°, 135°, 225°, 315°...[/mm]
das alles gilt aber nur, wenn wir uns im 3-dimensionalen raum befinden...
ich hoffe das war einigermaßen verständlich.
lieben gruß,
Fulla
|
|
|
|