matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraVektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Vektoren
Vektoren < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:04 So 29.10.2006
Autor: ruya

Aufgabe
Seien [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] zwei Ortsvektoren mit verschiedenen Richtungen. Finden Sie den Ortsvektorndes Schnittpunkts der beiden Geraden, wobei die Ki reele Zahl sind:
g1: [mm] (\vec{a} [/mm] + [mm] \vec{b}) [/mm] + [mm] K1\vec{b} [/mm]
g2: [mm] (\vec{b} [/mm] - [mm] \vec{a}) [/mm] + K2 [mm] (\vec{a} +2\vec{b}) [/mm]

Hi leute,
was muss ich denn hier machen? ich habe leider keinen ahnung!! ihr seid meine letzte hoffnung. ich wäre echt dankbar auf lösungsansätze!!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 12:28 So 29.10.2006
Autor: Zwerglein

Hi, ruya,

> Seien [mm]\vec{a}[/mm] und [mm]\vec{b}[/mm] zwei Ortsvektoren mit
> verschiedenen Richtungen.

Also: Die beiden sind LINEAR UNABHÄNGIG.
Findet man demnach eine Gleichung der Art
[mm] \lambda*\vec{a} [/mm] + [mm] \mu*\vec{b} [/mm] = [mm] \vec{o}, [/mm]
so müssen [mm] \lambda [/mm] und [mm] \mu [/mm] beide =0 sein!

> Finden Sie den Ortsvektor des
> Schnittpunkts der beiden Geraden, wobei die Ki reelle Zahlen
> sind:
>  g1: [mm](\vec{a}[/mm] + [mm]\vec{b})[/mm] + [mm]K1\vec{b}[/mm]
>  g2: [mm](\vec{b}[/mm] - [mm]\vec{a})[/mm] + K2 [mm](\vec{a} +2\vec{b})[/mm]

Für die Suche des Schnittpunktes musst Du die beiden Geraden gleichsetzen.

Dann formst Du um, bis Du eine Gleichung der Art

[mm] (...)*\vec{a} [/mm] + [mm] (...)*\vec{b} [/mm] = [mm] \vec{o} [/mm]

vorliegen hast.

Wegen der lin.Unabh. der beiden Vektoren (siehe oben!) müssen dann beide Klammern =0 sein, woraus Du k1 und k2 berechnen kanst und damit wiederum den Schnittpunkt.

(Zum Vergleich: Ich erhalte für den Ortsvektor des Schnittpunktes:
[mm] \vec{s} [/mm] = [mm] \vec{a} [/mm] + [mm] 5*\vec{b}.) [/mm]

mfG!
Zwerglein

Bezug
                
Bezug
Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:55 So 29.10.2006
Autor: ruya

sprich g1=g2 schreiben
also: [mm] (\vec{a}+\vec{b}) [/mm] + [mm] K1\vec{b} [/mm] = [mm] (\vec{b}-\vec{a}) [/mm] + K2 [mm] (\vec{a} +2\vec{b}) [/mm]
danach auf beiden seiten [mm] -(\vec{b}-\vec{a}) [/mm] abziehen oder?
dann hätt ich ja  [mm] 2\vec{a}+K1\vec{b} [/mm] = K2 [mm] (\vec{a}+2\vec{b}) [/mm]
danach auf beiden seiten [mm] -K2(\vec{a}+2\vec{b}) [/mm] abziehen oder?
dann hätt ich ja  [mm] 2\vec{a}+K1\vec{b}-K2(\vec{a}+2\vec{b})= [/mm] 0 oder?
danach weiß ich aber nicht weiter

Bezug
                        
Bezug
Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 13:34 So 29.10.2006
Autor: Zwerglein

Hi, ruya,

> sprich g1=g2 schreiben
>  also: [mm](\vec{a}+\vec{b})[/mm] + [mm]K1\vec{b}[/mm] = [mm](\vec{b}-\vec{a})[/mm] +  K2 [mm](\vec{a} +2\vec{b})[/mm]
>  danach auf beiden seiten
> [mm]-(\vec{b}-\vec{a})[/mm] abziehen oder?
>  dann hätt ich ja  [mm]2\vec{a}+K1\vec{b}[/mm] = K2[mm](\vec{a}+2\vec{b})[/mm]
>  danach auf beiden seiten [mm]-K2(\vec{a}+2\vec{b})[/mm] abziehen oder?
>  dann hätt ich ja  [mm]2\vec{a}+K1\vec{b}-K2(\vec{a}+2\vec{b})=[/mm]  0 oder?

Richtig! (Aber rechts steht nicht "0" sondern [mm] \vec{o} [/mm] !)

Dann "Ordnen" nach [mm] \vec{a} [/mm] und [mm] \vec{b}: [/mm]

(2 - [mm] k2)*\vec{a} [/mm] + (k1 [mm] -2k2)*\vec{b} [/mm] =  [mm] \vec{o} [/mm]

Und nun halt die Klammern =0 setzen!

mfG!
Zwerglein

Bezug
                                
Bezug
Vektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:40 So 29.10.2006
Autor: ruya

danke schööön

Bezug
                                
Bezug
Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:55 So 29.10.2006
Autor: ruya

nun habe ich [mm] (2-K2)*\vec{a} [/mm] + [mm] (K1-2K2)*\vec{b} [/mm] = [mm] \vec{0} [/mm] erhalten. was muss ich denn danach machen? wie setze ich nun die Klammern gleich 0? wie soll denn das aussehen?

Bezug
                                        
Bezug
Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 12:03 Mo 30.10.2006
Autor: Zwerglein

Hi, ruya,

> nun habe ich [mm](2-K2)*\vec{a}[/mm] + [mm](K1-2K2)*\vec{b}[/mm] = [mm]\vec{0}[/mm]
> erhalten. was muss ich denn danach machen? wie setze ich
> nun die Klammern gleich 0? wie soll denn das aussehen?

Na, wie setzt man denn Klammern =0?

So halt:

(2-k2) = 0
und
(k1-2k2) = 0.

Und nun k1 und k2 ausrechnen!

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]