matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, WinkelVektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Längen, Abstände, Winkel" - Vektoren
Vektoren < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektoren: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:08 Mo 09.12.2013
Autor: Mathematiker100

Aufgabe
Gegeben sind die Geraden ga mit der Gleichung

x= (0;0;a) + t*(1;a;1) mit a , t element R

Aufgabe :

Begründen Sie, dass für den Abstand d(a) der Geraden ga zum zum Punkt Qa (1;1;a) mit a element R gilt:

d(a) = [mm] (\wurzel{a²-2a+3} /(\wurzel{a²+2} [/mm]

Beschreiben Sie den Verlauf des Graphen von d(a) über den gesammten Definitionsbereich im Sachzusammenhang.

Hallo liebe Mathematiker,
ich weiß das es sich nicht gehört einfach so eine Aufgabe in den Raum zu stellen, jedoch kann ich mit der Aufgabe leider nichts Anfangen brauch jedoch ein gutes Ergebnis :/
Ich hoffe ihr könnt mir helfen.

Ich hab am Anfang erstmal den normalen Abstand von dem Punkt Q zu der geraden berechnet:

d = [mm] \bruch{\vektor{1 \\ a \\ 1} x ( \vektor{1 \\ 1 \\ a} - \vektor{0 \\ 0 \\ a})}{\vektor{1 \\ a \\ 1}} [/mm]  


Jeweils der Zähler und Nenner mit Betrag.

Das ist ja die Formel mit der ich den Abstand für gewöhnlich von einem Punkt zu einer Geraden berechne. Jedoch was hat das mit der vorgegebenen Formel zu tun ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:53 Mo 09.12.2013
Autor: chrisno

Ich habe ein wenig aufgeräumt, schau nach, ob ich es richtig gemacht habe.

> Gegeben sind die Geraden

[mm] $g_a$ [/mm]

> mit der Gleichung

$x = [mm] \vektor{0 \\ 0 \\a} [/mm] + t [mm] \vektor{1 \\ a \\1}$ [/mm] mit $a , t [mm] \in \IR$ [/mm]

>  
> Aufgabe :
>  
> Begründen Sie, dass für den Abstand d(a) der Geraden [mm] $g_a$ [/mm]
> zum zum Punkt [mm] $Q_a [/mm] = (1;1;a)$ mit $a [mm] \in \IR$ [/mm] gilt:
>  
> d(a) = [mm]\bruch{\wurzel{a^2-2a+3}}{\wurzel{a^2+2}}[/mm]
>  
> Beschreiben Sie den Verlauf des Graphen von d(a) über den
> gesammten Definitionsbereich im Sachzusammenhang.
> ....
> Ich hab am Anfang erstmal den normalen Abstand von dem
> Punkt Q zu der geraden berechnet:
>
> d = [mm]\bruch{\left|\vektor{1 \\ a \\ 1} \times \left( \vektor{1 \\ 1 \\ a} - \vektor{0 \\ 0 \\ a} \right)\right|}{\left|\vektor{1 \\ a \\ 1}\right|}[/mm]

> ....

Du musst das nur noch ausrechnen. Der Betrag ist die Wurzel aus der Summe der Quadrate der Komponenten.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]