matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesVektorfeld
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Sonstiges" - Vektorfeld
Vektorfeld < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorfeld: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:31 Mi 10.11.2010
Autor: zocca21

Aufgabe
Gegeben sind die folgenden Vektorfelder:

u: (x,y) -> (2xy,2xy)
v:(x,y) -> [mm] (x^2 [/mm] - [mm] y^2, 15-x^2) [/mm]

Es sei T:={(x,y) [mm] \in \IR^2 [/mm] | y [mm] \le (x-1)^2 [/mm] , y [mm] \le (x+1)^2, [/mm] y [mm] \ge x^2 [/mm] - 3 }

a) Skizzieren sie T und geben sie eine postitiv orientierte stückweise glatte reguläre Parameterisierung C des Randes von T an
b) Berecnen Sie die Zirkulation von u längs des Randes von T
c) Bestimmen sie möglichst geschickt die Zirkulation von v längs des Randes von T

Das Skizzieren von T habe ich noch hinbekommen, dann hakt es aber auch schon.
Wie mache ich denn so eine glatte Reguläre Parameterisierung des Randes?

Vielen Dank für die Hilfe

        
Bezug
Vektorfeld: nicht zu weit suchen.
Status: (Antwort) fertig Status 
Datum: 20:52 Mi 10.11.2010
Autor: moudi


> Gegeben sind die folgenden Vektorfelder:
>  
> u: (x,y) -> (2xy,2xy)
>  v:(x,y) -> [mm](x^2[/mm] - [mm]y^2, 15-x^2)[/mm]

>  
> Es sei [mm] $T:=\{(x,y) \in \IR^2| y \le (x-1)^2 , y \le (x+1)^2, y \ge x^2- 3\}$ [/mm]
>  
> a) Skizzieren sie T und geben sie eine postitiv orientierte
> stückweise glatte reguläre Parameterisierung C des Randes
> von T an
>  b) Berecnen Sie die Zirkulation von u längs des Randes
> von T
>  c) Bestimmen sie möglichst geschickt die Zirkulation von
> v längs des Randes von T
>  Das Skizzieren von T habe ich noch hinbekommen, dann hakt
> es aber auch schon.
>  Wie mache ich denn so eine glatte Reguläre
> Parameterisierung des Randes?

Ich nehme an, dass der Rand aus 3 (oder mehr?) Stuecken der Parabeln bestehen (ich habs nicht skizziert).
Klarerweise musst du die Endpunkte (=Schnittpunkte der Parabeln) diese Stuecke bestimmen. Ist z.B. (Achtung keine richtigen Zahlen) ein Stueck des Randes auf der Parabel [mm] $y=(x-1)^2$ [/mm] gegeben, fuer [mm] $-1\leq x\leq [/mm] 1$, dann kanns du $x$ als Parameter nehmen und diese Stueck parametrisieren durch [mm] $(x=t,y=(t-1)^2)\quad -1\leq t\leq [/mm] 1$.

mfG Moudi

>  
> Vielen Dank für die Hilfe


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]