matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikVektorfelder
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Physik" - Vektorfelder
Vektorfelder < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorfelder: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:55 Sa 13.11.2010
Autor: Theoretix

Aufgabe
a) Bestimmen Sie a so, dass für das Vektorfeld [mm] \vec{A}(\vec{r})=(axy-z^3)\vec{e}x+(a-2)x^2\vec{e}y+(1-a)xz^2\vec{e}z [/mm]
gilt: rot [mm] \vec{A}(\vec{r})=0 [/mm]

b) Skizzieren Sie die Vektorfelder [mm] \vec{A}(\vec{r})=x\vec{e}x+y\vec{e}y [/mm] und
[mm] \vec{B}(\vec{r})=-y\vec{e}x+x\vec{e}y [/mm]

Hallo zusammen,

zu a)

Rotation eines Vektorfeldes bedeutet doch, dass ich den Nabla Operator als Kreuzprodukt mit dem Vektorfeld anwende: Also „Nabla“ x [mm] \vec{A}(\vec{r}), [/mm]

dh ich bekomme erstmal allgemein:

„Nabla“ x [mm] \vec{A}(\vec{r})=\vektor{\bruch{\partial z}{\partial y} -\bruch{\partial y}{\partial z} \\ \bruch{\partial x}{\partial z}-\bruch{\partial z}{\partial x} \\ \bruch{\partial y}{\partial x}-\bruch{\partial x}{\partial y}} [/mm]

Jetzt rechne ich jeweils die partiellen Ableitungen aus, fasse zusammen und erhalte:

rot [mm] \vec{A}(\vec{r})=\vektor{0-0 \\ -2z^2+az^2 \\ ax-2x} [/mm]

Jetzt setze ich die y,z Komponenten= 0 und erhalte a=2

Stimmt das soweit?

zu b)

[mm] \vec{A}(\vec{r})=x\vec{e}x+y\vec{e}y [/mm] sieht in meiner Zeichnung so aus:

Alle Vektoren zeigen Radialsymmetrisch in alle Richtungen da jedem Punkt (x,y) ja auch der Vektor x,y zugeordnet wird...Also ist jeder Punkt auch sein eigener Ortsvektor, oder?

Bei [mm] \vec{B}(\vec{r})=-y\vec{e}x+x\vec{e}y [/mm] sieht man doch, dass sich für einen Punkt (x,y) die Koordinaten vertauschen und der Y bzw der neue x Wert negiert wird, was ja einer Drehung um 90°(Gegenuhrzeigersinn) entspricht, meine Skizze sieht dann so aus:
Ich zeichne mit zu einem beliebigen Punkt bzw Ortsvektor einen dazu orhogonalen Ortsvektor und verbinde die beiden Punkte, was ich erhalte sieht aus wie ein Wirbelfeld, oder?

Würde mich über Anmerkungen freuen!

Liebe Grüße





        
Bezug
Vektorfelder: Antwort
Status: (Antwort) fertig Status 
Datum: 12:25 Sa 13.11.2010
Autor: leduart

Hallo
Deine Rechng. und die Beschreibung der Vektorfelder, 1 radial, Länge der Vektoren r, 2 tangential an Kreise um 0, Beträge wieder r-
Gruss leduart


Bezug
                
Bezug
Vektorfelder: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:44 Sa 13.11.2010
Autor: Theoretix

Hi,

danke für die Antwort, aber sind irgendwelche Zeichen verschwunden?

Da steht nur „Deine Rechnung.“ Stimmt die?

Und zu den Feldskizzen:
Von der Vorgehensweise mache ich ja folgendes: Ich setze einen beliebigen Punkt in das Vektorfeld ein und erhalte einen neuen Ortsvektor. Diesen verschiebe ich parallel bis zu meinem Punkt und erhalte den zugeordneten Vektor, was ja in dem Fall immer ein tangentialer Vektor zu einem Kreis um 0 ist(wie du schon sagtest)?



Gruß

Bezug
                        
Bezug
Vektorfelder: Antwort
Status: (Antwort) fertig Status 
Datum: 16:11 Mo 15.11.2010
Autor: leduart

Hallo
sorry, weiss auch nicht was passiert ist.
Der volle Text:
Deine Rechng.ist richtig  und die Beschreibung der Vektorfelder, 1 radial, Länge der Vektoren =r, 2 tangential an Kreise um 0, Beträge wieder =r ist auch richtig.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]