matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeVektorklausuraufgabe Unklar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Moduln und Vektorräume" - Vektorklausuraufgabe Unklar
Vektorklausuraufgabe Unklar < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorklausuraufgabe Unklar: Musterlösung anders als meine
Status: (Frage) beantwortet Status 
Datum: 10:16 Mo 16.04.2012
Autor: ObiKenobi

Aufgabe
Gegeben : A = [mm] \pmat{ 4 & 1 \\ 1 & -2 } [/mm]
Gesucht : [mm] (A-2E)^{-1} [/mm]

Meine Rechnung :
A-2E =  [mm] \pmat{ 2 & 1 \\ 1 & -4 } [/mm]
det(A-2E) = -9

[mm] A^{-1} [/mm] = [mm] \bruch{1}{-9}*\pmat{ 4 & -1 \\ -1 & 2 } [/mm]

Musterlösung:

A-2E =  [mm] \pmat{ 2 & 1 \\ 1 & -4 } [/mm]
det(A-2E) = -9

[mm] A^{-1} [/mm] = [mm] \bruch{1}{9}*\pmat{ 4 & 1 \\ 1 & -2 } [/mm]

Die Regel für die Inverse Matrix ist doch :

[mm] A^{-1} [/mm] = [mm] \bruch{1}{det(A)}*adj(A) [/mm]

nach dieser Regel komm ich auf obiges Ergebnis aber die Musterlösung ist irgendwie nicht so. Wo liegt mein Fehler?

        
Bezug
Vektorklausuraufgabe Unklar: Antwort
Status: (Antwort) fertig Status 
Datum: 10:23 Mo 16.04.2012
Autor: schachuzipus

Hallo ObiWan,


> Gegeben : A = [mm]\pmat{ 4 & 1 \\ 1 & -2 }[/mm]
>  Gesucht :
> [mm](A-2E)^{-1}[/mm]
>  
> Meine Rechnung :
>  A-2E =  [mm]\pmat{ 2 & 1 \\ 1 & -4 }[/mm] [ok]
>  det(A-2E) = -9
>  
> [mm]A^{-1}[/mm] = [mm]\bruch{1}{-9}*\pmat{ 4 & -1 \\ -1 & 2 }[/mm] [notok]
>  
> Musterlösung:
>  
> A-2E =  [mm]\pmat{ 2 & 1 \\ 1 & -4 }[/mm]
>  det(A-2E) = -9
>  
> [mm]A^{-1}[/mm] = [mm]\bruch{1}{9}*\pmat{ 4 & 1 \\ 1 & -2 }[/mm] [ok]
>  Die Regel
> für die Inverse Matrix ist doch :
>  
> [mm]A^{-1}[/mm] = [mm]\bruch{1}{det(A)}*adj(A)[/mm]

Für [mm]2\times 2[/mm]-Matrizen: [mm]A^{-1}=\pmat{a&b\\ c&d}^{-1}=\frac{1}{\operatorname{det}(A)}\cdot{}\pmat{d&-b\\ -c&a}[/mm]

Es werden also die Elemente auf der Hauptdiagonale nur getauscht, die auf der Nebendiagonale bekommen einen Vorzeichenwechsel verpasst.


>  
> nach dieser Regel komm ich auf obiges Ergebnis aber die
> Musterlösung ist irgendwie nicht so. Wo liegt mein Fehler?

Du hast als erstes Element in der Inversen eine 4, das muss ne -4 sein, du musst nur tauschen auf der Hauptdiagonalen ...

Gruß

schachuzipus


Bezug
                
Bezug
Vektorklausuraufgabe Unklar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:34 Mo 16.04.2012
Autor: ObiKenobi

Okay also wird aus
A-2E =   [mm] \pmat{ 2 & 1 \\ 1 & -4 } [/mm]
dann
[mm] A^{-1} [/mm] = [mm] \bruch{1}{-9} \pmat{ -4 & -1 \\ -1 & 2 } [/mm]
und wegen dem [mm] \bruch{1}{-9} [/mm] kann ich die Vorzeichen ja wieder tauschen,
also ist das "entgültige" ergebnis
[mm] A^{-1} [/mm] = [mm] \bruch{1}{9} \pmat{ 4 & 1 \\ 1 & -2 } [/mm]

recht so? Oder hab ichs falsch verstanden? Würd mich diesmal nämlich ganz gern "richtig" auf die Nachklausur vorbereiten :-P

Bezug
                        
Bezug
Vektorklausuraufgabe Unklar: Antwort
Status: (Antwort) fertig Status 
Datum: 10:44 Mo 16.04.2012
Autor: fred97


> Okay also wird aus
> A-2E =   [mm]\pmat{ 2 & 1 \\ 1 & -4 }[/mm]
>  dann
>  [mm]A^{-1}[/mm] = [mm]\bruch{1}{-9} \pmat{ -4 & -1 \\ -1 & 2 }[/mm]
>  und
> wegen dem [mm]\bruch{1}{-9}[/mm] kann ich die Vorzeichen ja wieder
> tauschen,
>  also ist das "entgültige" ergebnis
>  [mm]A^{-1}[/mm] = [mm]\bruch{1}{9} \pmat{ 4 & 1 \\ 1 & -2 }[/mm]
>  
> recht so?

Ja, aber statt [mm]A^{-1}[/mm]  schreibe [mm](A-2E)^{-1}[/mm]

FRED

> Oder hab ichs falsch verstanden? Würd mich
> diesmal nämlich ganz gern "richtig" auf die Nachklausur
> vorbereiten :-P


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]