matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraVektorräume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Vektorräume
Vektorräume < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorräume: Vektorraumaxiome
Status: (Frage) beantwortet Status 
Datum: 17:00 Do 21.04.2005
Autor: Freak84

Ich habe da ein Problem mit einem Beweis:

X = Vektorraum
K = Körper

Für (X,K) mögen alle Vektorraumaxoime geltern außer  1*a = a
1 [mm] \in [/mm] K  , a [mm] \in [/mm] X
Man Zeige : x [mm] \in [/mm] X ist als Summe  x = a + b  mit   1*a = a  und 1*b = 0 darstellbar.

Leider habe ich gar keinen ansatz im Moment und würde mich über hilfe sehr freuen

Danke
Freak


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Vektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 19:08 Fr 22.04.2005
Autor: Max

Hallo Michael,

ich würde es mal so versuchen.

Es gibt zwei mögliche Fälle die man betrachten muss:

1. Fall: Sei [mm] $x\in [/mm] V$ mit [mm] $1\cdot [/mm] x = x$

Dann wählt man $a=x$ und $b=0$ und hat wegen dem neutralen Element von $(V; +)$ sichergestellt dass $x=x+0$ mit [mm] $1\cdot [/mm] x=x$ und [mm] $1\cdot [/mm] 0 =0$.

2. Fall: Sei [mm] $x\in [/mm] V$ mit [mm] $1\cdot [/mm] x [mm] \neq [/mm] x$

Dann sei [mm] $y=1\cdot [/mm] x$. Wegen $y= [mm] 1\cdot [/mm] x = [mm] (1\cdot [/mm] 1) [mm] \cdot [/mm]  y = [mm] 1\cdot (1\cdot [/mm] x)= [mm] 1\cdot [/mm] y$ gilt [mm] $y=1\cdot [/mm] y$. Damit hat $x$ die Darstellung $x=y+0$, also $a=y$ und $b=0$.

Das einzige was man zeigen muss, ist dass [mm] $1\cdot [/mm] 0 =0$ gelten muss.

Angenommen es würde gelten [mm] $1\cdot [/mm] 0 = z [mm] \neq [/mm] 0$. Wegen [mm] $z=1\cdot [/mm] 0= 1 [mm] \cdot \left(z + (-z)\right)= 1\cdot [/mm] z + [mm] 1\cdot [/mm] (-z) = z + 1 [mm] \cdot [/mm] (-z)$, daraus folgt aber, dass [mm] $1\cdot [/mm] (-z)=0$. Damit erzeugt man den Widerspruch [mm] $0=1\cdot [/mm] (-z)= [mm] (1\cdot 1)\cdot [/mm] (-z)= [mm] 1\cdot (1\cdot [/mm] (-z) )= [mm] 1\cdot [/mm] 0 =z$. Also muss doch gelten [mm] $1\cdot [/mm] 0=0$.

Gruß Max

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]