matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraVektorräume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Vektorräume
Vektorräume < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorräume: Frage
Status: (Frage) beantwortet Status 
Datum: 20:24 Sa 21.05.2005
Autor: Raz

Hallo
Irgendwann werde ich noch wahnsinnig! Ich schreibe nächste Woche eine Klausur in Mathe2 Lehramt Gund/Mittelschule und habe mal wieder keine Ahnung.
Mein Problem sind die Untervektorräume und die lineare Un-abhängigkeit!
Mein Stand: Um reellle Vektorräume zubeweisen, muss man zeigen das es eine abelsche Gruppe ist und das die Skalarmulti. gilt. Aber bei den Untervektorräumen hängt es. Es sind Teilmengen eines Vektorraumes und die Lineare Hülle ist auch so einer aber das hilft mir nicht!????

Danke in Vorraus ich bin für alles dankbar.

P.S. Lineare Un-Abhängigkeit bereitet mir auch Schwierigkeiten
Ich habe diese Frage in keinem anderen Forum im Internet gestellt.


        
Bezug
Vektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 21:24 Sa 21.05.2005
Autor: marymary

Hi!

Um zu zeigen, dass eine Teilmenge eines Vektorraumes ein UNTERRAUM ist, musst du zeigen, dass sie

a) nicht leer ist (also gib irgendein Element an) und
b) bezüglich der Addition und Skalarmultiplikation abgeschlossen ist.

Abgeschlossen bezüglich der Addition und Skalarmultiplikation meint, dass für beliebige Elemente u und v aus der Teilmenge U und ein [mm] \lambda [/mm] aus der Körper K gilt, dass auch u+v  und [mm] \lambda u [/mm] in U liegen.


Ja, und Vektoren [mm] v _{1} bis v _{n} [/mm] sind genau dann LINEAR UNABHÄNGIG, wenn es keine nicht-triviale Linearkombination der Null gibt.

d.h.: für [mm] \alpha_{1}, ... , \alpha_{n} \in [/mm] K gilt:

[mm] \alpha_{1} v_{1} + ... + \alpha_{n} v_{n}=0 \Rightarrow \alpha_{1} = \alpha_{n} =0 [/mm] .

Dann mal noch gutes Lernen =0)
Marie

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]