matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraVektorraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Vektorraum
Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:23 Di 01.11.2005
Autor: Ernesto

Salut zusammen. ich habe eine FRage:

ist folgende Darstellung und der Den Axiomen eines Vektorraumes eine Vektorraum ??

[mm] \lambda^2 [/mm] (1,2,.....,n) + [mm] \mu [/mm] (n, n-1,....., 1) mit  [mm] \lambda [/mm] , [mm] \mu \in [/mm] R      hier sei n [mm] \ge [/mm] 3


{(1,1,.....,1)} Dies ist doch offensichtlich ein Vektorraum ...

{(x1, x2, ........, xn) [mm] \in R^n [/mm] mit x1 = 1 } auch hier bin ich der meinung das diese Menge unter den Axiomen zu einen Vektorraum wird.

würde mich über Antwort freuen  


        
Bezug
Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 12:45 Mi 02.11.2005
Autor: angela.h.b.


> Salut zusammen. ich habe eine FRage:
>  
> ist folgende Darstellung und der Den Axiomen eines
> Vektorraumes eine Vektorraum ??

Hallo,

zu einem Vektorraum gehört ja so allerlei: eine Menge Mit einer Verknüpfung, ein Skalarenkörper und eine skalare Multiplikation. Und wenn man das alles hat, kann man sich dranmachen und irgendwelche Axiome prüfen.

Von daher ist dein Frage etwas - gelinde gesagt - rudimentär gestellt.

O.K. ,   mit gutem Willen sieht man da unten  Mengen , die Teilmengen des [mm] \IR^n [/mm] sein sollen. Die Verknüpfung soll die gewöhnliche Addition im  [mm] \IR^n [/mm] sein? Der Skalarenkörper [mm] \IR? [/mm] Das ist alles nicht selbstverständlich, aber unter diesen Voraussetzungen beantworte ich deine Frage.

>  
> [mm] \lambda^2 [/mm] (1,2,.....,n) + [mm] \mu [/mm] (n, n-1,....., 1) mit  
> [mm] \lambda [/mm] , [mm] \mu \in [/mm] R      hier sei n [mm] ]\ge [/mm] 3

Prüfe, ob -(1,2,.....,n) in der Menge liegt. Wenn nicht: kein VR.

>  
>
> {(1,1,.....,1)} Dies ist doch offensichtlich ein Vektorraum

Ja??? Für mich nicht. Ich sehe hier ein einziges Element und bereits 0*(1,1...1) liegt nicht in dieser Menge.
Oder war eine andere Menge gemeint, als die, die hier steht? Vielleicht {x [mm] \in \IR^n [/mm] l  x= lambda(1,1,...,1),  [mm] \lambda \in \IR}? [/mm] Das wäre ein Vektorraum. Offensichtlich??? Ich weiß nicht. Wären wohl schon die Axiome zu prüfen, oder zu zeigen, daß es ein Untervektorraum ist.

> ...
>  
> {(x1, x2, ........, xn) [mm] \in R^n [/mm] mit x1 = 1 } auch hier bin
> ich der meinung das diese Menge unter den Axiomen zu einen
> Vektorraum wird.

Na also, ich bitte Dich! In der Menge sind doch nur n-Tupel, deren erste Komponente=1 ist. Und wenn Du so ein n-Tupel mit 5 multiplizierst, liegt's nicht in der Menge. Dann ist doch die erste Komponente ein 5!
  

Gruß v. Angela

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]