Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:51 Di 09.11.2004 | Autor: | SERIF |
Hallo. Ich versuche die Aufgabe zu lösen, kann bitte jemand mir helfen. Danke
Aufgabe) Sei K ein Körper un V einvektorraum über K. Sei S [mm] \subseteq [/mm] V,
S [mm] \not= \emptyset
[/mm]
L(S):= { [mm] \summe_{i=1}^{n} \lambda_{i}s_{i} [/mm] | n [mm] \in \IN, [/mm] n [mm] \ge 1,s_{i} \in [/mm] S, [mm] \lambda_{i} \in [/mm] K }
die lineare Hülle von S. ( Wir setzen L( [mm] \emptyset [/mm] ) : = {0}.)
L(S) ist stets ein Untervektorraum von V. (aus der Vorlesung ist bekannt)
Was ist lineare Hülle
Man zeige:
a) L(S [mm] \cup [/mm] T) = L(S) + L(T) für S,T [mm] \subseteq [/mm] V
b) L(U) = U, wenn U ein Untervektorraum von V ist.
c) L(L(S)) = L(S)
Danke für Ihre HILFE.
|
|
|
|
Die Linear Hülle einer Menge von Vektoren ist die Menge aller Linearkombinationen dieser Vektoren, also Quasie der Raum, der durch diese Vektoren aufgespannt wird.
Im Körper der Reellen Zahlen ist z.B. die Hülle von einem Vektor eine Gerade, von 2 Vektoren (sofern sie linear unabhängig sind) eine Ebene, von 3 lin. unabhängigen vektoren ein 3-dimensonaler Raum...
Die Aufgaben kann man durch hinschreiben der Definition lösen.
Seien z.B. [mm]X = \{x_i\}_{i=1,...,n} [/mm] und [mm]Y= \{y_j\}_{j=1,...,n} [/mm] 2 (endliche) Systeme von Vektoren.
und sei [mm] Z = \{z_1 , ... ,z_{n+m} \}:= \{x_1,...,x_n , y_1 , ..., y_n \} [/mm]
So ist die lineare Hülle von [mm] X \cup Y [/mm]
[mm]lin( X \cup Y ) = \{ \sum_{i=1}^{n+m} \lambda_i z_i | \lambda_i \in \IR, z_i \in Z \} [/mm]
[mm] = \{ \sum_{i=1}^{n} \lambda_i x_i + \sum_{j=1}^{m} \lambda_{n+j} y_i | \lambda_i \in \IR, x_i \in X , y_i \in Y \} [/mm]
[mm] = \{ \sum_{i=1}^{n} \lambda_i x_i | \lambda_i \in \IR, x_i \in X \} + \{ \sum_{j=1}^{m} \lambda_{n+j} y_i | \lambda_i \in \IR, y_i \in Y \} [/mm]
[mm] = lin(X) + lin(Y) [/mm]
b) wird klar, wenn man bedenkt, dass das ein unterraum so definiert ist, dass mit jeweils 2 Vektoren deren Summe und ihr Vielfaches wieder in diesem Raum liegen, also durch das Bilden der linearen Hülle keine Weiteren Vektoren hinzu kommen können, und außerdem speziell das 1-fache jedes Vektors in der Linearen Hülle liegt (indem man alle anderen Koeffizienten 0 setzt), also auch keine Vektoren verschwinden durch das bilden der Hülle.
c) ist eine direkte Folgerung aus b). Man muss nur zeigen, dass die Lineare Hülle von einer Menge von Vektoren Vektorraumeigenschaft hat. (Einfaches überprüfen der Axiome)
Ich hoffe, ich habe weiterhelfen können
|
|
|
|