matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenVektorraum 2 x 2 Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Abbildungen" - Vektorraum 2 x 2 Matrix
Vektorraum 2 x 2 Matrix < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraum 2 x 2 Matrix: Tipp
Status: (Frage) beantwortet Status 
Datum: 10:44 So 09.07.2017
Autor: kntr91

Aufgabe
f: [mm] \IR\ [/mm] 2 x 2 [mm] \to \IR [/mm]  
[mm] \pmat{ a & b \\ c & d }| [/mm] a + d [mm] \in \IR [/mm]

[mm] \{\pmat{ a & b \\ c & d }|a , b, c , d \in \IR \} [/mm]

a) Ist das eine Lineare Abbildung ?
b) Berechnen Sie das Bild (f)
c) Berechnen Sie den Kern (f).


Könnte mir jemand einen Tipp geben , wie ich an diese Aufgaben herangehe ?


a) Für eine Lineare abbildung gilt : Additiv und Homogen ,aber wie zeige ich es bei dem Beispiel mit einer 2 x 2 Matrix ?
Zur b) Mein Bild bildet auf die Einheitsbasis [mm] \pmat{ 1 & 0 \\ 0 & 0 } ,\pmat{ 0 & 1 \\ 0 & 0}, \pmat{ 0 & 0 \\ 1 & 0 } ,\pmat{ 0 & 0\\ 0 & 1 } [/mm] ab ,aber wie berechne ich das Bild ?
Zur c) Mein Kern berechnet sich ja aus a = -d aber ich weiss icht wie ich bei der Aufgabe anwenden soll ?
Für jede Hilfe bin ich dankbar :)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vektorraum 2 x 2 Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 12:11 So 09.07.2017
Autor: angela.h.b.


> f: [mm]\IR\[/mm] 2 x 2 [mm]\to \IR[/mm]  
> [mm]\pmat{ a & b \\ c & d }|[/mm] a + d [mm]\in \IR[/mm]
>  
> [mm]\{\pmat{ a & b \\ c & d }|a , b, c , d \in \IR \}[/mm]

Hallo,

[willkommenmr].

Zunächst sollten wir mal klären, um welche Abbildung es geht.
Ist es so gedacht:

f: [mm] \IR^{2 x 2}\to \IR [/mm]
mit
[mm] \pmat{ a & b \\ c & d }\mapsto [/mm] a + d


>  
> a) Ist das eine Lineare Abbildung ?

Auf jeden Fall es es eine Abbildung zwischen zwei Vektorräumen,
nämlich dem Raun der [mm] 2\times2-Matrizen [/mm] über [mm] \IR [/mm] und [mm] \IR, [/mm] betrachtet als Vektorraum über [mm] \IR, [/mm]
und Du sagst richtig, daß man die Additivität und die Homogenität prüfen muß.

Additivität:
Hier ist zu prüfen, ob der Funktionswert der Summe gleich der Summe der Funktionswerte  ist,
ob also

[mm] f(\pmat{ a & b \\ c & d }+\pmat{ a' & b' \\ c' & d' })=f(\pmat{ a & b \\ c & d })+f(\pmat{ a' & b' \\ c' & d' }). [/mm]

Bei der Homogenität prüfe, ob

[mm] f(r*\pmat{ a & b \\ c & d })=r*f(\pmat{ a & b \\ c & d }). [/mm]


>  b) Berechnen Sie das Bild (f)

Bild(f) ist in der Tat der Raum, der von den Bildern einer Basis aufgespannt wird.
Eine Basis ist [mm] \pmat{ 1 & 0 \\ 0 & 0 } ,\pmat{ 0 & 1 \\ 0 & 0}, \pmat{ 0 & 0 \\ 1 & 0 } ,\pmat{ 0 & 0\\ 0 & 1 }. [/mm]

Wir berechnen die Bilder:

[mm] f(\pmat{ \red{1} & 0 \\ 0 &\red{0} })=1+0=1 [/mm] ,
[mm] f(\pmat{ \red{0} & 1 \\ 0 & \red{0}})=0+0=0, [/mm]
[mm] f(\pmat{ 0 & 0 \\ 1 & 0 })=0+0=0 [/mm] ,
[mm] f(\pmat{ 0 & 0\\ 0 & 1 })=0+1=1. [/mm]

[mm] Bild(f)=<1,0,0,1>=\{a*1+b*0+c*0+d*1| a,b,c,d\in\IR\}=\IR [/mm]

Man hätte hier auch anders argumentieren können, z.B. über die Dimension.

>  c) Berechnen Sie den Kern (f).

Hier mußt Du herausfinden, wie die Matrizen gemacht sind, die vermöge f auf die Null (in [mm] \IR) [/mm] abgebildet werden, für welche Matrizen [mm] \pmat{ a & b \\ c & d } [/mm] also gilt: [mm] f(\pmat{ a & b \\ c & d })=0. [/mm]

[mm] f(\pmat{ a & b \\ c & d })=0 [/mm]
<==> a+d=0
<==> a=-d (<==> -a=d)

Das hattest Du auch schon herausgefunden.

Die Matrizen, die auf die 0 abgebildet werden, haben also diese Gestalt:
[mm] \pmat{ a & b \\ c & -a }. [/mm]

Also ist

[mm] kern(f)=\{\pmat{ a & b \\ c & -a }|a,b,c\in \IR\}, [/mm]
oder mitilfe einer Basis des Kerns geschrieben:

[mm] kern(f)=<\pmat{ 1 & 0 \\ 0 & -1 },\pmat{ 0 & 1 \\ 0 & 0 }, \pmat{ 0 & 0 \\ 1 & 0 }> [/mm]

LG Angela


>  Könnte mir jemand einen Tipp geben , wie ich an diese
> Aufgaben herangehe ?
>  a) Für eine Lineare abbildung gilt : Additiv und Homogen
> ,aber wie zeige ich es bei dem Beispiel mit einer 2 x 2
> Matrix ?
>  Zur b) Mein Bild bildet auf die Einheitsbasis [mm]\pmat{ 1 & 0 \\ 0 & 0 } ,\pmat{ 0 & 1 \\ 0 & 0}, \pmat{ 0 & 0 \\ 1 & 0 } ,\pmat{ 0 & 0\\ 0 & 1 }[/mm]
> ab ,aber wie berechne ich das Bild ?
>  Zur c) Mein Kern berechnet sich ja aus a = -d aber ich
> weiss icht wie ich bei der Aufgabe anwenden soll ?
>  Für jede Hilfe bin ich dankbar :)
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
        
Bezug
Vektorraum 2 x 2 Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 08:15 Mo 10.07.2017
Autor: fred97

Eine Bemerkung:

ist V ein K-Vektorraum und $f:V [mm] \to [/mm] K$ linear und ist f nicht die Nullabbildung, so ist Bild(f)=K.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]