matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeVektorraum Schreibweise
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Moduln und Vektorräume" - Vektorraum Schreibweise
Vektorraum Schreibweise < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraum Schreibweise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:09 So 13.11.2011
Autor: oktollber

Hallo liebe Community,

ich hätte eine Frage bzgl. meiner Aufgabe.

" Zeige, dass [mm] \IQ(\wurzel{2}) [/mm] := { [mm] a+\wurzel{2}b [/mm] : a,b [mm] \in \IQ} [/mm]
ein [mm] \IQ [/mm] -Vektorraum ist. "

Was bedeutet das " [mm] \IQ(\wurzel{2}) [/mm] ". Ich würde es so lesen. Die rationale Zahl von Wurzel 2 wird als a plus die Wurzel aus 2 mal b definiert.
Das ergibt für mich aber nicht wirklich Sinn.

Ich bin für jede Hilfe dankbar. :)

mfg
oktollber

        
Bezug
Vektorraum Schreibweise: Antwort
Status: (Antwort) fertig Status 
Datum: 22:24 So 13.11.2011
Autor: leduart

Hallo
da steht doch, die def von [mm] \IQ(\wurzel{2}) [/mm] genau das heisst :=
die menge aller Zahlen [mm] a+b*\wurzel{2} [/mm] ewobeo a,b rationale zahlen sind.
also gehören erstmal  für b=0 alle rationalen zahlen dazu, dann alle rationalen vielfachen von [mm] \wurzel{2} [/mm] und dann die Summen  von 2 der Art.
Gruss leduart


Bezug
                
Bezug
Vektorraum Schreibweise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:33 So 13.11.2011
Autor: oktollber

Hallo,

d.h. ich habe eine Menge mit Werten.
Und [mm] \IQ [/mm] -Vektorraum heißt dann, dass die Verknüpfungen von
[mm] \IQ [/mm] gelten und ich die Vektorraumaxiome dafür nachweisen muss?

mfg
oktollber

Bezug
                        
Bezug
Vektorraum Schreibweise: Antwort
Status: (Antwort) fertig Status 
Datum: 22:47 So 13.11.2011
Autor: leduart

Hallo
hallo ja, ich würde es lieber "Objekte" nennen als Werte, denn ein VR aus "Werten" ist schlecht vorstellbar.

[mm] \Q [/mm] Vektorraum heisst dass die skalare Multiplikation mit Faktoren aus [mm] \IQ [/mm] (also nicht aus ganz [mm] \IR) [/mm] erfolgt.
und jetzt sieh die axiome des VR nach oder erinner dich dran, am besten immer wieder aufschreiben und zeig sie nacheinader alle.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]