matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperVektorraum und Körper..
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Vektorraum und Körper..
Vektorraum und Körper.. < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraum und Körper..: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:13 Mo 18.11.2013
Autor: Kartoffelchen

Aufgabe
Sei K ein Unterkörper des Körpers (L, +, *).
Dann ist L zusammen mit der Addition und der Multiplikation auf KxL ein Vektorraum über K.

Zeigen Sie dies.

Geben Sie Beispiele für solche Vektorräume für K = Z/2Z, K = Q,  K=R, K=C.

Zu den Beispielen:

Sei K = Z/2Z.
Das heißt doch: $ K = [mm] \{0', 1'\} [/mm] $ mit $ 0' = [mm] \{..., -12, -10..., 0, 2, 4\} [/mm] $
und $ 1' = [mm] \{...-3, -1, 1, 3, ...\} [/mm] $

Nun suche ich einen Vektorraum (L, +, KxL)..

Ich verstehe leider nicht, was genau zu tun ist =/

Ist die Menge L gesucht? Kann ich dann nicht einfach L = {0', 1'} nehmen?

Gleiches Problem für die anderen Beispiele..




Zum Beweis:
Ich zeige die Vektorraum-Axiome:

V1) zu zeigen (L, +) ist eine abelsche Gruppe. Das ist der Fall, da (L, +, *) ein Körper ist.

V2) Eigenschaften der Skalarmultiplikation.
für u,v,w [mm] \in [/mm] L und a,b [mm] \in [/mm] K gilt:

S1) Distributivgesetz, d.h.
$(a+b)*v = (a*v) + (b*v)$
Das ist erfüllt, denn alle a,b sind auch in L, da K ein Unterkörper von L ist. Für L gilt jedoch das Distributivgesetz, daher auch für die auf KxL eingeschränkte Multiplikation

S2) Neutralität des Einselements aus K:
Da K ein Unterkörper ist, hat K auch das neutrale Element bzgl. der Multiplikation aus L, d.h. es gilt tatsächlich 1*v = v

S3) a*(b*v) = (a*b)*v
S4) a*(u+v) = a*v + a*v


Vielen Dank, wie immer :)


        
Bezug
Vektorraum und Körper..: weitere Einschränkungen?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:22 Mo 18.11.2013
Autor: wieschoo

Steht die Aufgabe wirklich so da? Denn wenn ich L selbst als Unterkörper von L betrachte, also L=K, dann sind Beispiele wie du eines angibst vollkommen richtig

>  Ist die Menge L gesucht? Kann ich dann nicht einfach L = {0', 1'} nehmen?

Demnach: Ja!

Bezug
        
Bezug
Vektorraum und Körper..: Antwort
Status: (Antwort) fertig Status 
Datum: 16:23 Mo 18.11.2013
Autor: angela.h.b.


> Sei K ein Unterkörper des Körpers (L, +, *).
> Dann ist L zusammen mit der Addition und der
> Multiplikation auf KxL ein Vektorraum über K.

>

> Zeigen Sie dies.

>

> Geben Sie Beispiele für solche Vektorräume für K = Z/2Z,
> K = Q, K=R, K=C.
> Zu den Beispielen:

>

> Sei K = Z/2Z.
> Das heißt doch: [mm]K = \{0', 1'\}[/mm] mit [mm]0' = \{..., -12, -10..., 0, 2, 4\}[/mm]

>

> und [mm]1' = \{...-3, -1, 1, 3, ...\}[/mm]

>

> Nun suche ich einen Vektorraum (L, +, KxL)..

>

> Ich verstehe leider nicht, was genau zu tun ist =/

>

> Ist die Menge L gesucht? Kann ich dann nicht einfach L =
> {0', 1'} nehmen?

>

Hallo,

das kannst Du machen.

> Gleiches Problem für die anderen Beispiele..

Beispiele:
[mm] K=\IQ:\qquad \IR [/mm] ist ein [mm] \IQ-Vektorraum [/mm]
[mm] K=\IR: \qquad\IR [/mm] ist ein [mm] \IR-Vektorraum,\IC [/mm] ist ein [mm] \IR-Vektorraum [/mm]
[mm] K=\IC: \qquad\IC [/mm] ist ein [mm] \IC-Vektorraum [/mm]

Über Deinen Beweis habe ich drüber geschaut. Sieht richtig aus.

LG Angela

    
>
>
>
>

> Zum Beweis:
> Ich zeige die Vektorraum-Axiome:

>

> V1) zu zeigen (L, +) ist eine abelsche Gruppe. Das ist der
> Fall, da (L, +, *) ein Körper ist.

>

> V2) Eigenschaften der Skalarmultiplikation.
> für u,v,w [mm]\in[/mm] L und a,b [mm]\in[/mm] K gilt:

>

> S1) Distributivgesetz, d.h.
> [mm](a+b)*v = (a*v) + (b*v)[/mm]
> Das ist erfüllt, denn alle a,b
> sind auch in L, da K ein Unterkörper von L ist. Für L
> gilt jedoch das Distributivgesetz, daher auch für die auf
> KxL eingeschränkte Multiplikation

>

> S2) Neutralität des Einselements aus K:
> Da K ein Unterkörper ist, hat K auch das neutrale Element
> bzgl. der Multiplikation aus L, d.h. es gilt tatsächlich
> 1*v = v

>

> S3) a*(b*v) = (a*b)*v
> S4) a*(u+v) = a*v + a*v

>
>

> Vielen Dank, wie immer :)

>

Bezug
                
Bezug
Vektorraum und Körper..: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 07:40 Di 19.11.2013
Autor: Kartoffelchen

Hallo ihr beiden!

Ja, die Aufgabe steht so da :)

Nochmal zu den Beispielen:..

1) Für K = Z/2Z
Mit dem tu ich mich leider schwer; könntet ihr mir bitte noch ein beliebiges Beispiel für einen K-Vektorraum nennen, das aber anschaulich genug ist, sodass ich daran auch nochmal die Axiome nachprüfen kann.. ?

2)
Wenn ich für K einen Körper wähle ( und das sind m.W. [mm] $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ [/mm] ) ist dann nicht auch [mm] $K^n$ [/mm] ein Vektorraum über K?

Vielen Dank.


Bezug
                        
Bezug
Vektorraum und Körper..: Antwort
Status: (Antwort) fertig Status 
Datum: 13:44 Mi 20.11.2013
Autor: angela.h.b.


> Hallo ihr beiden!

>

> Ja, die Aufgabe steht so da :)

>

> Nochmal zu den Beispielen:..

>

> 1) Für K = Z/2Z
> Mit dem tu ich mich leider schwer; könntet ihr mir bitte
> noch ein beliebiges Beispiel für einen K-Vektorraum
> nennen, das aber anschaulich genug ist, sodass ich daran
> auch nochmal die Axiome nachprüfen kann.. ?

Hallo,

ich weiß nicht, was Du Dir unter einem "anschaulichen" Beispiel vorstellst.
K = Z/2Z hat doch immerhin den Vorteil, daß dieser Körper nicht sehr unübersichtlich ist.

>

> 2)
> Wenn ich für K einen Körper wähle ( und das sind m.W.
> [mm]\mathbb{Q}, \mathbb{R}, \mathbb{C}[/mm] )

Das sind Beispiele für Körper.

> ist dann nicht auch
> [mm]K^n[/mm] ein Vektorraum über K?

Doch.
Aber nicht ein solcher, über welchen hier in der Aufgabe geredet wird. Hier soll die Menge der Vektoren ja aus einem Oberkörper der Menge der Skalare bestehen.

LG Angela
>

> Vielen Dank.

>

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]