matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenVektorrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Vektoren" - Vektorrechnung
Vektorrechnung < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:12 Do 25.09.2014
Autor: Dresden12

Aufgabe
Der Vektor [mm] \vec{a} [/mm] hat den Betrag 6. Die gegebenen Richtungskosinus seien cosα1 = 2/3 und cosα2 =−2/3. Er soll eine positive z-Komponente haben und auf der Summe der Vektoren
[mm] \vec{b} [/mm] = (0,1,4) und [mm] \vec{c} [/mm] = (1,1,C3) senkrecht stehen.
a) Man bestimme C3.
b) Wie groß ist der Flaecheninhalt des aus [mm] \vec{b} [/mm] und [mm] \vec{c} [/mm] gebildeten Parallelogramms?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Bitte kann mir jemand weiter helfen, wie ich die Rechnung lösen kann? Mit dem Richtungskosinus könnte ich den Vektor ausrechnen aber ich kann mit den 2/3 und -2/3 nichts anfangen. Bitte um Hilfe. Danke

        
Bezug
Vektorrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:48 Do 25.09.2014
Autor: Marcel

Hallo,

> Der Vektor [mm]\vec{a}[/mm] hat den Betrag 6. Die gegebenen
> Richtungskosinus seien cosα1 = 2/3 und cosα2 =−2/3. Er
> soll eine positive z-Komponente haben und auf der Summe der
> Vektoren
>  [mm]\vec{b}[/mm] = (0,1,4) und [mm]\vec{c}[/mm] = (1,1,C3) senkrecht
> stehen.
>  a) Man bestimme C3.
>  b) Wie groß ist der Flaecheninhalt des aus [mm]\vec{b}[/mm] und
> [mm]\vec{c}[/mm] gebildeten Parallelogramms?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Bitte kann mir jemand weiter helfen, wie ich die Rechnung
> lösen kann? Mit dem Richtungskosinus könnte ich den
> Vektor ausrechnen aber ich kann mit den 2/3 und -2/3 nichts
> anfangen. Bitte um Hilfe. Danke

wie sind die Richtungskosinus definiert?

Und das "senkrecht stehen" hat etwas mit dem Skalarprodukt zu tun.

zu b) Das hat etwas mit dem []Kreuzprodukt zu tun.

Die Frage nach dem Richtungskosinus stelle ich nicht nur, damit Du Dir klar
machst, was da per Definitionem hingehört.

Ich kann mit dem Begriff nicht wirklich was anfangen. Allerdings habe ich

    []hier (klick!)

etwas gefunden, was dieser Begriff wohl meint. Passt das zu dem, was
Ihr gelernt habt?

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]