matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteVektorzerlegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Skalarprodukte" - Vektorzerlegung
Vektorzerlegung < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:28 Fr 18.12.2009
Autor: zocca21

Aufgabe
Sei v = (1, 2,−1, 3) und w = (3, 0, 2,−1).
Berechnen Sie das Skalarprodukt <v|w>
Zerlegen Sie w in einen Vektor orthogonal zu v.

Das Skalarpordukt zu berechnen ist kein Problem...
Sollte hier
3 + 0 - 2 - 3 = -2 sein.

Aber für die Zerlegung des Vektors fehlt mir jeglicher Ansatz.

Vielen Dank

        
Bezug
Vektorzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:38 Fr 18.12.2009
Autor: reverend

Hallo zocca,

> Sei v = (1, 2,−1, 3) und w = (3, 0, 2,−1).
>  Berechnen Sie das Skalarprodukt <v|w>
>  Zerlegen Sie w in einen Vektor orthogonal zu v.
>  Das Skalarpordukt zu berechnen ist kein Problem...
>  Sollte hier
> 3 + 0 - 2 - 3 = -2 sein.

[ok]

> Aber für die Zerlegung des Vektors fehlt mir jeglicher
> Ansatz.

Du sollst [mm] \vec{w} [/mm] in zwei Vektoren zerlegen, nennen wir sie [mm] \vec{x} [/mm] und [mm] \vec{y}. [/mm] Diese müssen folgende Bedingungen erfüllen:

1) [mm] \vec{w}=\vec{x}+\vec{y} [/mm]
2) [mm] \vec{x}=k*\vec{v} [/mm]
3) [mm] <\vec{v}\,|\,\vec{y}>=0 [/mm]

Damit solltest Du schon hinkommen.

Trotzdem noch ein Tipp:
Weißt Du etwas über den Zusammenhang von Skalarprodukt und Projektion eines Vektors auf einen anderen? Sonst google doch mal...

lg
reverend


Bezug
                
Bezug
Vektorzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:47 Fr 18.12.2009
Autor: zocca21

Okay...also 2 Begebenheiten schaff ich meistens, jedoch die Dritte dann nicht..

Gibt es einen Weg wie man vorgehen muss?

Danke

Bezug
                        
Bezug
Vektorzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:59 Fr 18.12.2009
Autor: reverend

Hallo zocca,

durch Ausprobieren wirst Du sie nicht finden, die beiden Vektoren.

1) [mm] \vec{w}=\vec{x}+\vec{y} [/mm]
2) [mm] \vec{x}=k*\vec{v} [/mm]
3) [mm] <\vec{v}\,|\,\vec{y}>=0 [/mm]

[mm] \Rightarrow <\vec{v}\,|\,\vec{w}>=<\vec{v}\,|\,(\vec{x}+\vec{y})>=<\vec{v}\,|\,\vec{x}>+<\vec{v}\,|\,\vec{y}>=<\vec{v}\,|\,k*\vec{v}>+0=k*|\vec{v}|^2 [/mm]

...womit ja k dann schonmal klar wäre.
Dann kannst du ja aus Gl. 2) [mm] \vec{x} [/mm] bestimmen, und dann aus Gl. 1) [mm] \vec{y}. [/mm]

lg
reverend

Bezug
                                
Bezug
Vektorzerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:40 Fr 18.12.2009
Autor: zocca21

Vielen Dank..habs gelöst

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]