matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungVerallg. Mittelwertsatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differenzialrechnung" - Verallg. Mittelwertsatz
Verallg. Mittelwertsatz < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verallg. Mittelwertsatz: Beweis
Status: (Frage) beantwortet Status 
Datum: 17:42 So 20.04.2008
Autor: DaniTwal

Aufgabe
Beweisen Sie den Mittelwertsatz und erklären Sie ihn anhand eines anschaulichen Beispiels.

Hallo allerseits !

Ich verstehe den Satz ja praktisch, aber ich sitze hier verzweifelt vor dem Beweis und verstehe gar nichts. Die Hilfsfunktion lautet im Buch:

h(x)= g(x)*(f(b)-f(a))-f(x)*(g(a)-g(b))

Wie kommt man darauf ? Ich kann es nicht nachvollziehen.
Danke im Vorraus, danitwal.

        
Bezug
Verallg. Mittelwertsatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:52 So 20.04.2008
Autor: DaniTwal

kann mir keiner helfen bitte ?

Bezug
        
Bezug
Verallg. Mittelwertsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 20:38 So 20.04.2008
Autor: zahllos

Hallo,

der Mittelwertsatz (der Differentialrechnung) besagt, dass für eine in einem Intervall differenzierbare Fuktion die Ableitung an mindestens
einem Punkt im Inneren des Intervalls mit der Steigung der Sekanten übereinstimmen muss.

Zeichnerisch ist das ganz offensichtlich, zeichne eine in Intervall [a;b] differenzierbare Funktion und trage die Sekante durch die Randpunkte
(a;f(a)) und (b;f(b)) ein, dann siehst du, dass für ein x aus [a;b] die Tangente an den Funktionsgraphen zur Sekante parallel ist.

Wie beweist man das? Eine Möglichkeit ist, den Satz von Rolle zu Hilfe
zu nehmen:
"Für jede im Intervall [a;b] differenzierbare Funktion mit f(a) = f(b)
existiert ein Wert x aus dem Inneren von [a;b] mit f'(x)=0".

Für den Mittelwertsatz betrachtest du die Funktion: [mm] F(x)=f(x)-\frac{f(b-b(a)}{b-a}(x-a) [/mm]  Die ist in [a;b] stetig und in
]a;b[ differenzierbar mit der Ableitung: [mm] F'(x)=f'x)-\frac{f(b)-f(a)}{b-a}. [/mm]
Außerdem gilt F(a)=f(a)=F(b). Aus dem Satz von Rolle folgt somit die Existenz einer Stelle x aus ]a;b[ mit F'(x)=0. Für diesen Wert x gilt die Behauptung des Mittelwertsatzes.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]