matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieVerallg. Produktregel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Zahlentheorie" - Verallg. Produktregel
Verallg. Produktregel < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verallg. Produktregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:19 Mo 15.11.2010
Autor: times

Aufgabe
Beweisen Sie die folgende Verallgemeinerung der Produktregel:

Für alle a,b,c [mm] \in \IZ [/mm] gilt: a|b [mm] \wedge [/mm] c|d [mm] \Rightarrow [/mm] a*c|b*d

Hallo alle zusammen,

wir haben heute folgende Aufgabe bekommmen, nur ich habe absolut keine Ahnung wie ich sie angehen kann, ich habe schon ein wenig die Bücher gewälzt, komme aber zu keinem Ansatz. Wäre super wenn ihr mich etwas unterstützen könntet.

Vielen Dank im vorraus : )

Liebe Grüße,
Times

        
Bezug
Verallg. Produktregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:28 Mo 15.11.2010
Autor: times

Versprachlichen kann ich diese Aufgabe:

a ist durch b teilbar und c durch d daraus folgt das, dass Produkt aus a und c widerum durch das Produkt aus b und d teilbar ist.

Bezug
        
Bezug
Verallg. Produktregel: Antwort
Status: (Antwort) fertig Status 
Datum: 19:43 Mo 15.11.2010
Autor: Fulla

Hallo Times,

[mm]a\ |\ b[/mm] heißt "a teilt b", aber du kannst auch sagen "b ist ein (ganzzahliges) Vielfaches von a". Schreibe also [mm]b=x\cdot a[/mm] mit einem [mm]x\in\mathbb Z[/mm].

Dasselbe machst du jetzt auch mit c und d und untersuchst das Produkt [mm]b\cdot d[/mm].


Lieben Gruß,
Fulla


Bezug
                
Bezug
Verallg. Produktregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:54 Mo 15.11.2010
Autor: times

Hallo Fulla,

super das du mir so schnell geantwortet hast.
Also müsste ich jetzt d=y*c in Beziehung mit b=x*a und dann im gesamten b*d bringen ?

Bezug
                        
Bezug
Verallg. Produktregel: Antwort
Status: (Antwort) fertig Status 
Datum: 20:50 Mo 15.11.2010
Autor: Fulla

Hallo nochmal,

ja genau. Durch die Teilbarkeitsvoraussetzungen weißt du, dass es ganze Zahlen x und y gibt mit b=a*x und d=c*y.
Jetzt rechne b*d aus und versuche daraus zu folgern, dass [mm]ac\ |\ bd[/mm] gilt. Oder anders ausgedrückt: finde eine Zahl z so, dass bd=ac*z gilt.

Lieben Gruß,
Fulla


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]