matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenVerallgemeinerte Heronformel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Verallgemeinerte Heronformel
Verallgemeinerte Heronformel < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verallgemeinerte Heronformel: Konvergenz beweisen
Status: (Frage) beantwortet Status 
Datum: 07:55 Mi 08.12.2010
Autor: pyw

Aufgabe
Sei a>0 beliebig, [mm] x_0=c>0 [/mm] beliebig und [mm] \[x_{n+1}=\frac{1}{k}((k-1)x_n+\frac{a}{x_n^{k-1}})=x_n+\frac{x_n}{k}(\frac{a}{x_n^k}-1)\] [/mm]
Zeigen Sie, dass [mm] (x_n [/mm] ) gegen [mm] \wurzel[a]{k} [/mm] kovergiert.
Hinweise:
Zeigen Sie in dieser Reihenfolge:
1. [mm] x_n>0 [/mm] für alle n
2. [mm] x_{n+1}^k\geq [/mm] a
3. [mm] x_n -x_{n+1}=\frac{x_n}{k}(1-\frac{a}{x_n^k}) [/mm]
4. Wegen 1. und 3. ist [mm] x_n [/mm] monoton fallend und durch 0 nach unten beschränkt, hat also einen Grenzwert g. Für diesen gilt [mm] g=\frac{1}{k}((k-1)g+\frac{a}{g^{k-1}}) [/mm] un damit auch [mm] g^k=a. [/mm] Warum?

Hi,

ich komme mit dem angegebenen Lösungsweg nicht ganz durch. Hier meine Ansätze.

zu 1) Für [mm] k\geq [/mm] 1 ist das induktiv mit dem Induktionsanfang [mm] x_0=c>0 [/mm] klar. In allen anderen Fällen funktioniert der Induktionsbeweis nicht für alle a. Beispiel k=-1: [mm] x_{n+1}=\frac{1}{-1}[(-1-1)x_n+a/x_n^{-1-1}] [/mm] = - [mm] [-2x_n+a x_n^2]=x_n(2-a x_n), [/mm] dann muss 2>a [mm] x_n [/mm] gelten, damit [mm] x_{n+1} [/mm] auch positiv.
Ich nehme an, dass k, obwohl nicht explizit angegeben, natürlich sein soll.

zu 2) Bernoulliungleichung, etwa mit [mm] \[x_{n+1}^k=[x_n(1+\frac{a}{kx_n^k}-\frac{1}{k})]^k=x_n^k(1+\frac{a}{kx_n^k}-\frac{1}{k})^k\stackrel{Bernoulli}{\geq}x_n^k(1+\frac{a}{x_n^k}-1)=a\]. [/mm] Dafür muss aber [mm] \frac{a}{kx_n^k}-\frac{1}{k}\geq [/mm] -1 sein. Das gilt mit [mm] k\geq [/mm] 1 und mit (1): [mm] \frac{a}{k x_n^k} [/mm] ist positiv und [mm] -\frac{1}{k}\geq [/mm] -1

zu 3) Folgt direkt aus Umformung der Definition

zu 4) Monoton fallend, da die rechte Seit mit k>0 (!) und (1) und (2) positiv ist. Nach unten beschränkt durch 0 wegen (1), also existiert g.
[mm] x_{n+1}-x_n [/mm] wird beliebig klein und im Grenzwert ist die Differenz 0. Also muss für g gelten, dass die Differenz 0 ist und man erhält genau die Gleichung (gibt es hierfür eine schönere Formulierung z.B. mit [mm] \varepsilon?). [/mm]
[mm] g^k=a [/mm] ist dann eine Lösung der Gleichung.

Ich wäre sehr erfreut, wenn jemand einmal einen Blick auf meine Überlegungen werfen könnte :-)

mfg pyw

        
Bezug
Verallgemeinerte Heronformel: Antwort
Status: (Antwort) fertig Status 
Datum: 08:39 Mi 08.12.2010
Autor: fred97


> Sei a>0 beliebig, [mm]x_0=c>0[/mm] beliebig und
> [mm]\[x_{n+1}=\frac{1}{k}((k-1)x_n+\frac{a}{x_n^{k-1}})=x_n+\frac{x_n}{k}(\frac{a}{x_n^k}-1)\][/mm]
>  Zeigen Sie, dass [mm](x_n[/mm] ) gegen [mm]\wurzel[a]{k}[/mm] kovergiert.
>  Hinweise:
>  Zeigen Sie in dieser Reihenfolge:
>  1. [mm]x_n>0[/mm] für alle n
>  2. [mm]x_{n+1}^k\geq[/mm] a
> 3. [mm]x_n -x_{n+1}=\frac{x_n}{k}(1-\frac{a}{x_n^k})[/mm]
>  4. Wegen
> 1. und 3. ist [mm]x_n[/mm] monoton fallend und durch 0 nach unten
> beschränkt, hat also einen Grenzwert g. Für diesen gilt
> [mm]g=\frac{1}{k}((k-1)g+\frac{a}{g^{k-1}})[/mm] un damit auch
> [mm]g^k=a.[/mm] Warum?
>  Hi,
>
> ich komme mit dem angegebenen Lösungsweg nicht ganz durch.
> Hier meine Ansätze.
>  
> zu 1) Für [mm]k\geq[/mm] 1 ist das induktiv mit dem
> Induktionsanfang [mm]x_0=c>0[/mm] klar. In allen anderen Fällen
> funktioniert der Induktionsbeweis nicht für alle a.
> Beispiel k=-1: [mm]x_{n+1}=\frac{1}{-1}[(-1-1)x_n+a/x_n^{-1-1}][/mm]
> = - [mm][-2x_n+a x_n^2]=x_n(2-a x_n),[/mm] dann muss 2>a [mm]x_n[/mm] gelten,
> damit [mm]x_{n+1}[/mm] auch positiv.
>  Ich nehme an, dass k, obwohl nicht explizit angegeben,
> natürlich sein soll.


So ist es


>  
> zu 2) Bernoulliungleichung, etwa mit
> [mm]\[x_{n+1}^k=[x_n(1+\frac{a}{kx_n^k}-\frac{1}{k})]^k=x_n^k(1+\frac{a}{kx_n^k}-\frac{1}{k})^k\stackrel{Bernoulli}{\geq}x_n^k(1+\frac{a}{x_n^k}-1)=a\].[/mm]
> Dafür muss aber [mm]\frac{a}{kx_n^k}-\frac{1}{k}\geq[/mm] -1 sein.
> Das gilt mit [mm]k\geq[/mm] 1 und mit (1): [mm]\frac{a}{k x_n^k}[/mm] ist
> positiv und [mm]-\frac{1}{k}\geq[/mm] -1
>  
> zu 3) Folgt direkt aus Umformung der Definition
>  
> zu 4) Monoton fallend, da die rechte Seit mit k>0 (!) und
> (1) und (2) positiv ist. Nach unten beschränkt durch 0
> wegen (1), also existiert g.
>  [mm]x_{n+1}-x_n[/mm] wird beliebig klein und im Grenzwert ist die
> Differenz 0. Also muss für g gelten, dass die Differenz 0
> ist und man erhält genau die Gleichung (gibt es hierfür
> eine schönere Formulierung


Daran ist nichts zu meckern

FRED

>  z.B. mit [mm]\varepsilon?).[/mm]
> [mm]g^k=a[/mm] ist dann eine Lösung der Gleichung.
>  
> Ich wäre sehr erfreut, wenn jemand einmal einen Blick auf
> meine Überlegungen werfen könnte :-)
>  
> mfg pyw


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]