matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieVerallgemeinerte Pyramide
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integrationstheorie" - Verallgemeinerte Pyramide
Verallgemeinerte Pyramide < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verallgemeinerte Pyramide: Tipp/Ansatz/Idee
Status: (Frage) beantwortet Status 
Datum: 23:19 Mi 27.11.2013
Autor: Vidane

Aufgabe
Sei [mm] f_{p,\alpha }:\mathbb{R} ^{2}\rightarrow \mathbb{R} ,\left( x,y\right) \rightarrow \left( 1-\left( \left| x\right| ^{p}+\left| y\right| ^{p}\right) ^{1/p}\right) ^{\alpha },\left( \left| x\right| ^{p}+\left| y\right| ^{p}\right) ^{1/p}\leq [/mm] 1
mit p=1,2 und [mm] \alpha \in [0,\infty [/mm] )

Bestimmen Sie [mm] \int _{\mathbb{R} ^{2}}f_{p,\alpha }\left( x,y\right) d\lambda ^{2}\left( x,y\right) [/mm]

Hey Leute :)

Ich bräuchte da eure Hilfe bei dieser Aufgabe.
Für p=2 habe ich das Ergebnis bereits. Dies fand ich nicht so schwer, da ich dort ein bestimmtes Schema befolgen konnte, eben mit der Transformationsformel nach Jacobi, und dann umwandeln in Polarkoordinaten.
Da habe ich dann das Ergebnis [mm] \dfrac {2\pi }{\left( \alpha +1\right) \left( \alpha +2\right) } [/mm] .

Darum geht es auch hier weniger. Und zwar habe ich mit p=1 ein Problem.
Ich weiß einfach nicht, wie ich das Integral
[mm] \int _{\mathbb{R} }f_{1,\alpha }\left( x,y\right) d\lambda ^{2}\left( x,y\right) =\int \left( 1-\left| x\right| -\left| y\right| \right) ^{\alpha }d\lambda ^{2\cdot }\left( x,y\right) [/mm]
berechnen, geschweige denn Umformen kann.
Gibts da auch eine Transformation wie im Fall p=2?

Vielen Dank und mit freundlichen Grüßen,
Vidane.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Verallgemeinerte Pyramide: Antwort
Status: (Antwort) fertig Status 
Datum: 06:04 Do 28.11.2013
Autor: fred97

Soll hier wirklich über [mm] \IR^2 [/mm] integriert werde ?


Oder über [mm] K_p:=\{(x,y) \in \IR^2: \left( \left| x\right| ^{p}+\left| y\right| ^{p}\right) ^{1/p}\leq 1\} [/mm]  ?

Wenn über [mm] K_p, [/mm] so mach Dir mal ein Bild von [mm] K_1. [/mm]

FRED

Bezug
                
Bezug
Verallgemeinerte Pyramide: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:46 Do 28.11.2013
Autor: Vidane

Hey Fred :)

Danke für deine Antwort.
Also hmm ja, so steht es zumindest in der Aufgabenstellung.
Aber vielleicht wollen die Aufgabensteller, dass wir selber noch den $ [mm] \IR^2 [/mm] $ auf die K-Menge von dir einschränken.

Also [mm] K_{1} [/mm] ist einfach so ein ein gedrehtes Quadrat (sodass es wie eine Raute aussieht) um den Ursprung. Das hatte ich mir schonmal aufgezeichnet, hat mir aber erstmal nicht so weitergeholfen.

Über einen weiteren Tipp wäre ich dankbar. (Es fällt mir noch i.A. recht schwer, solche Integrale aufzulösen)

MfG,
Vidane

Bezug
                        
Bezug
Verallgemeinerte Pyramide: Antwort
Status: (Antwort) fertig Status 
Datum: 10:28 Do 28.11.2013
Autor: fred97


> Hey Fred :)
>  
> Danke für deine Antwort.
>  Also hmm ja, so steht es zumindest in der
> Aufgabenstellung.
> Aber vielleicht wollen die Aufgabensteller, dass wir selber
> noch den [mm]\IR^2[/mm] auf die K-Menge von dir einschränken.
>  
> Also [mm]K_{1}[/mm] ist einfach so ein ein gedrehtes Quadrat (sodass
> es wie eine Raute aussieht) um den Ursprung. Das hatte ich
> mir schonmal aufgezeichnet, hat mir aber erstmal nicht so
> weitergeholfen.

Mach Dir Klar, dass gilt:

[mm] $\integral_{K_1}^{}{(1-|x|-|y|)^{\alpha} d \lambda^2(x,y)}=4*\integral_{\Delta}^{}{(1-x-y)^{\alpha} d \lambda^2(x,y)}$, [/mm]

wobei [mm] \Delta=\{(x,y) \in \IR^2: y \le 1-x, 0 \le x \le 1\}. [/mm]

Nun bemühe Herrn Fubini.

FRED

>  
> Über einen weiteren Tipp wäre ich dankbar. (Es fällt mir
> noch i.A. recht schwer, solche Integrale aufzulösen)
>  
> MfG,
>  Vidane


Bezug
                                
Bezug
Verallgemeinerte Pyramide: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:59 Do 28.11.2013
Autor: Vidane

Ah super, vielen Dank,  habs verstanden.
Die Rechnung war ja dann recht einfach.

[mm] 4\int ^{1}_{0}\int ^{1-x}_{0}\left( 1-x-y\right) ^{\alpha }dydx=\dfrac {4}{\left( \alpha +1\right) }\dfrac {}{\left( \alpha +2\right) } [/mm]

Hab ich dann als Ergebnis.
Vielen Dank nochmals.
MfG,
Vidane

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]