matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Vereinfachen von Termen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mathe Klassen 8-10" - Vereinfachen von Termen
Vereinfachen von Termen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vereinfachen von Termen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:32 So 27.02.2005
Autor: Lueger

Hallo,

vielleicht hab ihr eine Lösung.
Ich wiederhole grade mein ganzes Mathezeugs da ich wieder auf die Schule gehen möchte. Ich komme bei den Aufgaben siehe unten)durch Probieren auf eine meist auf eine richitge Lösung und kann dann auch kürzen.
Meine Frage ist ob es eine Möglichkeit gibt nach einem bestimmten Verfahren etc. dies zu beschleunigen da das ausprobieren doch sehr sehr lange (bei mir zumindest) dauert ;-)

wie komme ich von da
24p²-29pq-63q² / 21q²-23pq+6p²

nach da
((7q-3p)*(-9q-8p)) / ((7q-3p)*(3q-2p))

Danke
Gruß
Lueger


Ich(ein Kollege) habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.chemieonline.de/forum/showthread.php?t=38682

        
Bezug
Vereinfachen von Termen: Idee
Status: (Antwort) fertig Status 
Datum: 22:10 So 27.02.2005
Autor: neo2k

Man kann das Problem anfassen, indem man eine Primfaktorzerlegung macht:
schau dir zunächst anfangs und endwert an :

24 p ^ 2
63 q ^ 2

nun machst du sowohl bei 24 als auch bei 63 eine Primfaktorzerlegung(Tiefe=2):
24 = 3 * 8
63 = 9 * 7

nun fängt du an einen Prototypen aufzustellen:
(8p-7q)*(3p+9q)
Hier merkst du aber, dass das mittlere Glied 51 pq beträgt; deins soll aber 29 sein: Einfach umsortieren:

(3p-7q)*(8p+9q)

Ich hoffe ich konnte dir ein bisschen Helfen;
Normalerweise würde man solche Gleichung mithilfe des Satz von Vieta in ein Produkt von Primfaktoren umformen aber nicht in soetwas :)


Bezug
                
Bezug
Vereinfachen von Termen: Frage
Status: (Frage) beantwortet Status 
Datum: 20:54 Mo 28.02.2005
Autor: Lueger

Wie würde das mit dem Satz von Vieta  aussehen.
Wie kann man den in diesem Fall anwenden ?

Danke

Gruß
Lueger

Bezug
                        
Bezug
Vereinfachen von Termen: Wohl eher nicht ...
Status: (Antwort) fertig Status 
Datum: 10:21 Di 01.03.2005
Autor: Loddar

Hallo Lueger!

Ich befürchte der MBSatz von Vieta wird Dir hier nicht wirklich weiterhelfen.

Zunächst gilt dieser nur in der Normalform, d.h. vor der 1. Quadratpotenz muß der Faktor "1" stehen.

Du müsstest also zuerst 24 (im Zähler) bzw. 21 (im Nenner) ausklammern.
Dann entstehen hier ziemlich "häßliche" (sprich: unpraktische) Brüche, die die Handhabung nach dem MBSatz von Vieta nur sehr schwer ermöglichen.


Gruß
Loddar


Bezug
        
Bezug
Vereinfachen von Termen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:33 Mo 28.02.2005
Autor: oliver.schmidt


> Hallo,
>  
> vielleicht hab ihr eine Lösung.
>  Ich wiederhole grade mein ganzes Mathezeugs da ich wieder
> auf die Schule gehen möchte. Ich komme bei den Aufgaben
> siehe unten)durch Probieren auf eine meist auf eine
> richitge Lösung und kann dann auch kürzen.
>  Meine Frage ist ob es eine Möglichkeit gibt nach einem
> bestimmten Verfahren etc. dies zu beschleunigen da das
> ausprobieren doch sehr sehr lange (bei mir zumindest)
> dauert ;-)
>  
> wie komme ich von da
>  24p²-29pq-63q² / 21q²-23pq+6p²
>  
> nach da
>  ((7q-3p)*(-9q-8p)) / ((7q-3p)*(3q-2p))
>  
> Danke
> Gruß
> Lueger
>  
>

also, die einfachste Methode hat dir neo2k schon zitiert, ich möchte sie noch ein wenig verfeinern

du zerlegst die Vorfaktoren der quadratischen Terme in Prinfaktoren:

24=2*2*2*3
63=7*3*3

gleiche Ziffern in der Primfaktorzerlegung fasst du zusammen

24=8*3
63=7*9

damit sind die "auszuklammernden" Ziffern schon gefunden. und so kommst du noch auf die Vorzeichen:

8     3  
9     7     wichtig die Zahlen von links nach rechts aufsteigend sortieren !!

hier gilt folgendes: die beiden Zahlen in der 1.Zeile müssen multipliziert 24 ergeben also entweder beide positiv oder negativ sein
die Zahlen in der zweiten Zeile müssen multipliziert -63 sein, also muss eine von beiden negativ sein

desweiteren muss die Summe über Kreuz multipliziert -29 ergeben

1. Versuch:
8   3
9  -7

8*3=24 ist ok
-7*9=-63 ok

jetzt die "Kreuzsumme":
(8*(-7))+(9*3)=-56+27  = -29



die Klammern werden nun horizontal (von oben nach unten abgelesen)

(8p+9q)(3p-7q)

es gibt noch eine 2.Lösung, die erhält man durch umdrehen aller Vorzeichen


(-8p-9q)(-3p+7q)



2. Beispiel:

21q²-23pq+6p²

21= 7*3
6=3*2

7   3    
3   2

7*3=21
3*2=6

7*2+3*3=14+9   [mm] \not= [/mm] -23

man erkennt hier aber schnell, dass -23 nur herauskommt wenn man -14-9 rechnet, also muss entweder 7 oder 2 negativ sein !

-7  -3
3     2

-7*(-3)=21  ok
3*2 =6  ok

-7*2+(3*(-3))= -14-9  stimmt


(-7q+3p)(-3q+2p)

2.Lösung: alle Vorzeichen umdrehen

(7q-3p)(3q-2p)

klingt kompliziert, das System hat man nach einiger Übung aber schnell raus

Gruß
OLIVER

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]