Vergleich von Erwartungswerten < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Es sei (X,Y) ein zweidimensionaler Zufallsvektor mit Dichte
[mm] $f^{X,Y}(x,y) [/mm] = [mm] \lambda^{2}*\exp(-\lambda*y)*1_{\{0\le x\le y\}}$.
[/mm]
Man berechne die Wahrscheinlichkeiten [mm] \IP(X\ge [/mm] Y) und [mm] \IP(2X\le [/mm] Y). |
Hallo!
In einer vorherigen Teilaufgabe habe ich bereits die beiden Randdichten berechnet:
[mm] $f^{X}(x) [/mm] = [mm] \lambda*\exp(-\lambda*x)$ [/mm] und [mm] $f^{Y}(y) [/mm] = [mm] \lambda^{2}*y*\exp(-\lambda*y)$
[/mm]
Allerdings habe ich keinen Ansatz, wie ich die geforderten Wahrscheinlichkeiten ausrechnen könnte - ich kann mit der Notation nicht viel anfangen. Mir ist zwar intuitiv klar, was [mm] \IP(X\ge [/mm] Y) bedeutet - aber ich kann es nicht ausrechnen.
Ich dachte mir, dass ich mit [mm] \IP(X-Y \ge [/mm] 0 ) mehr anfangen könnte, aber das hat mit auch nichts gebracht.
Uns wurde als Tipp gegeben, man solle z.B. die Bedingung [mm] $2X\le [/mm] Y$ als Indikatorfunktion aufschreiben und dann irgendwie mit der Indikatorfunktion in der Zähldichte oben vermengen. (--> [mm] 1_{2X\le Y} [/mm] ??).
Allerdings verstehe ich nicht, wie ich die Indikatorfunktion [mm] 1_{\{0\le x\le y\}} [/mm] mit [mm] 1_{2X\le Y} [/mm] vermengen soll.
Kann mir bitte jemand weiterhelfen?
Vielen Dank für Eure Mühe,
Stefan
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:37 Mi 25.11.2009 | Autor: | luis52 |
Moin Stefan,
1) Zeichne mal die Menge [mm] $\mathfrak{M}=\{(x,y)\mid 1_{\{0\le x\le y\}}=1\}$. [/mm] Wo liegt da die Menge [mm] $\{(x,y)\mid x\ge y\}$?
[/mm]
2) Ich habe noch einen Vorschlag: Betrachte [mm] $\mathfrak{N}=\{(x,y)\mid 0\le 2x\le y\}\subset\mathfrak{M}$. [/mm] Dann ist
[mm] $P(2X\le Y)=\int\int_{\mathfrak{N}}f(x,y)\,dx\,dy$
[/mm]
(ohne Notationsoverkill).
vg Luis
|
|
|
|
|
Hallo luis52,
danke für deine Antwort!
> 1) Zeichne mal die Menge [mm]\mathfrak{M}=\{(x,y)\mid 1_{\{0\le x\le y\}}=1\}[/mm].
> Wo liegt da die Menge [mm]\{(x,y)\mid x\ge y\}[/mm]?
Also betrachte ich die Zufallsvariablen X und Y als "so eine Art x und y", oder?
Also wenn ich die Menge [mm] \{(x,y)\mid x\ge y\} [/mm] betrachten soll...?
Ich verstehe den Schritt von [mm] \IP(X\ge [/mm] Y) auf das Betrachten der Menge noch nicht ganz.
Die Menge ist nur eine Gerade, also
[mm] \{(x,y)|0 \le x = y\},
[/mm]
oder?
Heißt das, dass
[mm] $\IP(X \ge [/mm] Y) = [mm] \int_{0}^{\infty}\int_{x}^{x}f(x,y) [/mm] dy dx = [mm] \int_{0}^{\infty}0 [/mm] dx = 0$
ist?
> 2) Ich habe noch einen Vorschlag: Betrachte
> [mm]\mathfrak{N}=\{(x,y)\mid 0\le 2x\le y\}\subset\mathfrak{M}[/mm].
> Dann ist
>
> [mm]P(2X\le Y)=\int\int_{\mathfrak{N}}f(x,y)\,dx\,dy[/mm]
Mhhh... Geht es dann so weiter:
[mm] $P(2X\le [/mm] Y) = [mm] \int_{0}^{\infty}\int_{2x}^{\infty}\lambda^{2}*\exp(-\lambda*y) [/mm] dy\ dx = [mm] \int_{0}^{\infty}\left[-\lambda*\exp(-\lambda*y) \right]_{2x}^{\infty}\ [/mm] dx = [mm] \int_{0}^{\infty}\lambda*\exp(-\lambda*2*x)\ [/mm] dx [mm] =\left[-\frac{1}{2}*\exp(-\lambda*2*x)\right]_{0}^{\infty} [/mm] = [mm] \frac{1}{2}$
[/mm]
?
Grüße,
Stefan
|
|
|
|
|
Ok,
dann danke ich dir erstmal für die Tipps, Luis
Grüße,
Stefan
|
|
|
|