matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenVergleichskriterium
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Vergleichskriterium
Vergleichskriterium < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vergleichskriterium: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:38 Do 01.11.2007
Autor: mandym

Aufgabe
Sagt der Vergleichssatz etwas über die Konvergenz bzw. Divergenz der Reihe [mm] \summe_{i=1}^{\infty} [/mm] 1/ [mm] (\wurzel{k} [/mm] +1)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Wir haben das sonst immmer mit Betrag von ak gerechnet, aber bei dieser Funktion ändert sich da ja gar nichts. Heißt das dann einfach, dass sich mit dem Vergleichssatz nichts aussagen lässt. Müsste man so was eventuell noch beweisen?

        
Bezug
Vergleichskriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 16:52 Do 01.11.2007
Autor: schachuzipus

Hallo mandym,

versuche mal, zu deiner Reihe [mm] $\sum\limits_{k=1}^{\infty}\frac{1}{\sqrt{k}+1}$ [/mm] eine divergente Minorante zu finden

Für den Divergenznachweis bietet sich als Vergleichsreihe eingentlich fast immer die divergente harmonische Reihe [mm] $\sum\limits_{k=1}^{\infty}\frac{1}{k}$ [/mm] an

Schätze also deine Reihe immer weiter gegen kleinere Reihen ab, bis am Ende die harmonische Reihe dasteht.

Und wenn die kleinere harmonische Reihe schon divergiert, so bleibt deiner armen größeren Reihe nichts anderes übrig, ala auch zu divergieren

Ich mache mal den Anfang:

[mm] $\sum\limits_{k=1}^{\infty}\frac{1}{\sqrt{k}+1}\ge\sum\limits_{k=1}^{\infty}\frac{1}{\sqrt{k}+\sqrt{k}}=$\sum\limits_{k=1}^{\infty}\frac{1}{2\sqrt{k}}=\frac{1}{2}\cdot{}$\sum\limits_{k=1}^{\infty}\frac{1}{\sqrt{k}}\ge [/mm] ...$


Kommste damit weiter?


LG

schachuzipus

Bezug
                
Bezug
Vergleichskriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:32 Do 01.11.2007
Autor: mandym


> Schätze also deine Reihe immer weiter gegen kleinere Reihen
> ab, bis am Ende die harmonische Reihe dasteht.
> Ich mache mal den Anfang:
>  
> [mm]\sum\limits_{k=1}^{\infty}\frac{1}{\sqrt{k}+1}\ge\sum\limits_{k=1}^{\infty}\frac{1}{\sqrt{k}+\sqrt{k}}=[/mm][mm] \sum\limits_{k=1}^{\infty}\frac{1}{2\sqrt{k}}=\frac{1}{2}\cdot{}[/mm]
> [mm]\sum\limits_{k=1}^{\infty}\frac{1}{\sqrt{k}}\ge ...[/mm]<

was heißt denn eine Reihe abzuschätzen? Die Rechenschritte kann ich nachvollziehen, außer das ich nicht weis wie man auf die zweite [mm] \wurzel{k} [/mm] kommt und warum dafür die 1 wegfällt (bzw. warum die Wurzel die 1 ersetzt).
Ich würde aber sonst sagen, dass die Reihe divergiert, weil sie kleiner ist, als der Betrag von ak, der mit k [mm] \to \infty [/mm] gegen 1 geht, richtig?

Bezug
                        
Bezug
Vergleichskriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 17:50 Do 01.11.2007
Autor: schachuzipus

Hallo mandym,

nach unten bzw. nach oben abschätzen heißt, einen kleineren bzw. größeren Ausdruck finden.

Du musst deine Reihe also immer weiter verkleinern (nach unten abschätzen), bis du die harmonische Reihe hast.

Alle Summanden in deiner Ausgangsreihe sind ja durchweg positiv.

Wie kann ich die verkleinern?

Nun, ich könnte die Zähler verkleinern, bringt aber nix, da steht schon die 1 ODER ich könnte die Nenner vergrößeren.

Das habe ich getan. Es ist doch für alle [mm] $k\in\IN$ [/mm] sicherlich [mm] $\sqrt{k}\ge [/mm] 1$

Dann habe ich mir solch einen Bruch (Glied der Reihe) [mm] $\frac{1}{\sqrt{k}+1}$ [/mm] genommen und statt ...+1 das größere [mm] ...+\sqrt{k} [/mm] in den Nenner geschrieben, also den Bruch und damit die Summe verkleinert.


Für die letzte notwendige Abschätzung überlege dir nun, wie du [mm] $\sqrt{k}$ [/mm] und $k$ gegeneinander abschätzen kannst....


Ok?

LG

schachuzipus

Bezug
                                
Bezug
Vergleichskriterium: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:40 Do 01.11.2007
Autor: mandym

Ich denke ich habe es jetzt verstanden. Vielen Dank, dass sie sich die Zeit genommen haben, das ganze nochmal so ausführlich zu erklären!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]