matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesVerifiziere Satz von Stokes
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Sonstiges" - Verifiziere Satz von Stokes
Verifiziere Satz von Stokes < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verifiziere Satz von Stokes: Stokes - Dreieck Integration
Status: (Frage) beantwortet Status 
Datum: 22:04 Fr 22.04.2011
Autor: frozer

Aufgabe
Gegeben sei ein zweidimensionales Vektorfeld mit den Komponenten
[mm]E_x = 2 \cdot b \cdot x \cdot y[/mm] und [mm]E_y = x^2 + a \cdot y^2[/mm]

Verifiziere den Stokes’schen Integralsatz durch Auswertung des Wegintegrals über die Kontur C und des Flächenintegrals über die eingeschlossene Fläche F .

http://img594.imageshack.us/img594/7226/12345678909876543234567.png

(a und b sind konstanten die in einem späteren aufgabenteil bestimmt werden sollen, das hab ich erfolgreich geschafft...)


erstmal das was ich habe:
nach Stokes gilt:
[mm] \integral_{F} rot(\vec{A}) \cdot d\vec{F} = \integral_{\partial F} \vec{A} \cdot d\vec{s} [/mm]

Für die Rotation von E hab ich
[mm] rot(E) = (2 \cdot x - 2 \cdot b \cdot x) \cdot \vec{e_z} [/mm]

und jetzt meine Frage wie mache ich weiter???
das größte problem was ich grad hab irgendwie über den Rand des Dreiecks zu integrieren.....den Flächeninhalt bekomm ich grad so hin xD

vielen dank für jede hilfe :)
hab die frage in keinem anderen forum gestellt und hoffe ich hab den richtigen thread erwischt.....

        
Bezug
Verifiziere Satz von Stokes: Antwort
Status: (Antwort) fertig Status 
Datum: 22:32 Fr 22.04.2011
Autor: leduart

Hallo
den Rand des gebietes musst du parametrisieren, in 3 Stücken z, Bsp
[mm] c_1(t)=\vektor(a*t\\0) [/mm] t =0 bis 1,  oder [mm] c_1(t)=c_1(t)=\vektor(t\\0) [/mm] t=0 bis a dann hoff ich du kommst weiter, achte drauf wierum der Weg läuft, damit du beim letzten t wieder bei 0 ankommst
Wenn du ne Parametrisierung hast dann ist [mm] d\vec{s}=c'*dt [/mm]
das Integral dann über die 3 Stücke einfach.
im ersten Teil ist
dF [mm] =dx*dy*e_z [/mm] sodass du nur über den Betrag von rot integrieren musst.
die Grenzen sind  da die gerade y=b/a*x ist oder x=a/by je nach dem ob du zuerst über x oder über y integrierst, das äißere integral dann von o bis b oder o bis a
Wenn du die Grenzen richtig hast muss wenn du nur über dxdy ntegrierst ja ddie dir bekannte fläche a*b/2 rauskommen (das nur zur Kontrolle.
Gruss leduart



Bezug
                
Bezug
Verifiziere Satz von Stokes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:22 Sa 23.04.2011
Autor: frozer

hi, vielen dank für die schnelle antwort....
ich habe mich mal für folgende parametrisierung entschieden....

[mm]c_1(t) = \begin{pmatrix} a\cdot t \\ 0 \end{pmatrix}, t \in [0,1][/mm]
für das untere dreieckstück

[mm]c_2(t) = \begin{pmatrix} a \\ b \cdot t \end{pmatrix}, t \in [0,1][/mm]
für das wagerechte dreieckstück

[mm]c_3(t) = \begin{pmatrix} a - a\cdot t \\ b - b \cdot t \end{pmatrix}, t \in [0,1][/mm]
und für die grade

ist das richtig so?
für meine integration von rot(E)
ergibt sich:

[mm] \integral_{0}^{a} \integral_{0}^{b} [/mm] (2x-2bx) [mm] \vec{e_z} \cdot [/mm] dy dx [mm] \vec{e_z}= [/mm]
[mm] \integral_{0}^{a} \integral_{0}^{b} [/mm] (2x-2bx) [mm] \cdot [/mm] dy dx =
[mm] \integral_{0}^{a} [/mm] (2xb-2b^2x) [mm] \cdot [/mm] dx =
[mm] \left[ (x^2 b-b^2 x^2) \right]^{a}_{0}= (a^2 [/mm] b [mm] -b^2 a^2) [/mm] = [mm] \ldots [/mm] =a [mm] \cdot [/mm] b [mm] \cdot [/mm] 1/2 ?????wirklich? bitte zeigen :D

vielen dank
grüße

Bezug
                        
Bezug
Verifiziere Satz von Stokes: Antwort
Status: (Antwort) fertig Status 
Datum: 19:08 Sa 23.04.2011
Autor: leduart

Hallo
du kannst nicht über y so integrieren, das geht doch bis zu der geraden y=b/a*x das ist die obere Grenze für das innere Integral (also mit dy)
du hast über ein rechteck integriert!
Deine parametrisierung für das randintegral ist richtig.
Gruss leduart



Bezug
                                
Bezug
Verifiziere Satz von Stokes: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:27 Sa 23.04.2011
Autor: frozer

erstmal vielen dank für deine antwort aber ich stell mich grad etwas zu doof an....


und zwar hab ich ja:

[mm] \integral_{0}^{a} \integral_{0}^{\bruch{b \cdot x}{a}} [/mm] 2x-2bx dy dx
richtig?
das wäre ja dann:
[mm] \integral_{0}^{a} \dfrac{b \cdot x}{a} \cdot [/mm] (2x-2bx) dx
= [mm] \integral_{0}^{a} \bruch{2 b \cdot x^2}{a} [/mm] - [mm] \bruch{ 2 b^2 \cdot x^2}{a} [/mm] dx
= [mm] \left[ \bruch{2 b \cdot x^3}{3a} - \bruch{ 2 b^2 \cdot x^3}{3a} \right]^a_0 [/mm]
= [mm] \left[ \bruch{2 b \cdot a^3}{3a} - \bruch{ 2 b^2 \cdot a^3}{3a} \right] [/mm]
= [mm] \left[ \bruch{2 b \cdot a^2}{3} - \bruch{ 2 b^2 \cdot a^2}{3} \right] [/mm] = [mm] \ldots [/mm] = [mm] \bruch{a \cdot b}{2} [/mm] wo ist der (denk-) fehler??

vielen dank & grüße

Bezug
                                        
Bezug
Verifiziere Satz von Stokes: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:24 Di 26.04.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]