matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungVerkettung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differenzialrechnung" - Verkettung
Verkettung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verkettung: Korrektur!
Status: (Frage) beantwortet Status 
Datum: 19:32 Do 13.09.2007
Autor: Ridvo

Aufgabe
Leiten Sie ab und vereinfachen Sie das Ergebnis.

Hallo du,

ich wäre echt dankbar, wenn du mir helfen könntest!
Würde gerne wissen, ob die Aufgaben richtig sind und bitte ggf. um korrektur.
Vielen Dank.

[mm] a)f(x)=\bruch{1}{(x-2)^2} [/mm]

f'(x)= [mm] \bruch{-1*2(x-2)}{(x-2)^3} [/mm]

     = [mm] \bruch{-2}{(x-2)^3} [/mm]

Also hier kann ich den ersten Schritt der Ableitung nicht nachvollziehen!
WOher kommt zB. die -1) und 2*(x-2) ?


LG Ridvan

        
Bezug
Verkettung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:49 Do 13.09.2007
Autor: barsch


> Hallo du,

Hi,

meinst du mich [laugh]

[mm] f(x)=\bruch{1}{(x-2)^2}=(x-2)^{-2} [/mm]

Und dann kannst du "ganz normal" ableiten:

[mm] f'(x)=(-2)*(x-2)^{-2-1}*1=(-2)*(x-2)^{-3}=-\bruch{2}{(x-2)^{3}} [/mm]



Wird es dir durch die Umformung bewusst?

MfG barsch


Bezug
                
Bezug
Verkettung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:52 Do 13.09.2007
Autor: Ridvo

Hey, jaaa genau du, jaaaa dich mein ich :P *haha*


Ja, ich kanns nachvollziehen.
Vielen Dank! Bist ein guter 'lehrer'

Dir noch nen schönen Abend!

Liebe Grüße
Ridvo> > Hallo du,

>  
> Hi,
>  
> meinst du mich [laugh]
>  
> [mm]f(x)=\bruch{1}{(x-2)^2}=(x-2)^{-2}[/mm]
>  
> Und dann kannst du "ganz normal" ableiten:
>  
> [mm]f'(x)=(-2)*(x-2)^{-2-1}*1=(-2)*(x-2)^{-3}=-\bruch{2}{(x-2)^{3}}[/mm]
>  
>
>
> Wird es dir durch die Umformung bewusst?
>  
> MfG barsch
>  


Bezug
        
Bezug
Verkettung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:57 Do 13.09.2007
Autor: Ridvo

Hey, ich hab noch eine Frage^^

Also wie kann ich denn [mm] \bruch{5}{(t^2-1)^2} [/mm] noch anders schreiben?
Sind es etwa [mm] 5(t^2-1)^{-2} [/mm] ?


MFG Ridvo

Bezug
                
Bezug
Verkettung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:02 Do 13.09.2007
Autor: Bastiane

Hallo Ridvo!

> Hey, ich hab noch eine Frage^^
>  
> Also wie kann ich denn [mm]\bruch{5}{(t^2-1)^2}[/mm] noch anders
> schreiben?
>  Sind es etwa [mm]5(t^2-1)^{-2}[/mm] ?

Genau. [daumenhoch] Denn negative Exponenten bedeuten doch einfach "1 durch diesen Teil in der Klammer".

Viele Grüße
Bastiane
[cap]

Bezug
        
Bezug
Verkettung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:03 Do 13.09.2007
Autor: Bastiane

Hallo Ridvo!

> [mm]a)f(x)=\bruch{1}{(x-2)^2}[/mm]
>  
> f'(x)= [mm]\bruch{-1*2(x-2)}{(x-2)^3}[/mm]
>  
> = [mm]\bruch{-2}{(x-2)^3}[/mm]
>  
> Also hier kann ich den ersten Schritt der Ableitung nicht
> nachvollziehen!
>  WOher kommt zB. die -1) und 2*(x-2) ?

Man könnte das auch als Quotientenregel betrachten. Dann wäre die Ableitung des Zählers=0, der erste Teil fällt also weg, und der zweite wird dann ja subtrahiert, das ist genau das, was da steht.

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
Verkettung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:08 Do 13.09.2007
Autor: Ridvo

VIelen dank Bastiane und Basch!

EInen schönen Abend noch!

MFG Ridvo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]