matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperVerkettung zweier Bijektionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Verkettung zweier Bijektionen
Verkettung zweier Bijektionen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verkettung zweier Bijektionen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:43 Do 05.07.2018
Autor: MatheSckell

Aufgabe
Zeigen Sie, dass die Verkettung zweier Bijektionen auf einer Menge M
wieder eine Bijektion ist.

Ich habe bisher versucht mir ein kleines Bild aufzumalen, was ich zeigen soll. Schon danach stehe ich auf dem Schlauch: Wie kann ich allgemein zeigen, dass die Verkettung zweier Bijektionen auf einer Menge M wieder eine Bijektion ist? Ich weiß, dass ich die Injektivität und Surjektivität zeigen muss. Aber wie das allgemein geht, weiß ich nicht.

        
Bezug
Verkettung zweier Bijektionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:17 Do 05.07.2018
Autor: fred97

Seien $f:A [mm] \to [/mm] B$ und $g:B [mm] \to [/mm] C$ bijektiv und $h=g [mm] \circ [/mm] f$, also $h:A [mm] \to [/mm] C$.

Zu zeigen ist: h is bijektiv.

1. f und g sind surjektiv, also gilt f(A)=B und g(B)=C, also

  $h(A)=g(f(A))=g(B)=C.$

Damit ist h surjektiv.

2. Seien x,y [mm] \in [/mm] A und h(x)=h(y). Dann f(g(x))=f(g(y)). Weil f injektiv ist, folgt g(x)=g(y). Weil g injektiv ist, bekommen wir x=y.

Damit ist h injektiv.

Bezug
                
Bezug
Verkettung zweier Bijektionen: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:14 Fr 06.07.2018
Autor: MatheSckell

Wow, vielen Dank für die Antwort!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]