matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische AnalysisVerknüpfung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "stochastische Analysis" - Verknüpfung
Verknüpfung < stoch. Analysis < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verknüpfung: Idee
Status: (Frage) beantwortet Status 
Datum: 16:07 Di 06.12.2011
Autor: ella87

Aufgabe
Es seien die Funktionen [mm]f: \IR \to \IR [/mm] mit [mm]f(x)=x^2[/mm] und [mm]g: \IR \to \IR [/mm] mit [mm]g(x)=(x-\bruch{1}{2})^2[/mm] gegeben.
X sein binomialverteilte Zufallsvariable mit Parametern [mm]1[/mm] und [mm]\bruch{1}{3}[/mm].

Bestimmen Sie die Verteilungen
(a)[mm]f \circ X [/mm]
(b)[mm]g \circ X [/mm]

X binomialverteilte Zufallsvariable mit Parametern [mm]1[/mm] und [mm]\bruch{1}{3}[/mm] bedeutet:

[mm]P(X=x) = {1 \choose x} \bruch{1}{3}^x \bruch{2}{3}^{1-x}[/mm]

wobei für x doch gilt [mm] x \in \{0,1,2,...\}[/mm] oder?

dann hab ich bei (a):

[mm]f \circ X [/mm] = [mm] f (X(x ))[/mm] = [mm]\left( {1 \choose x} \bruch{1}{3}^x \bruch{2}{3}^{1-x} \right)^2[/mm] = [mm]\left( \bruch{1!}{x!(1-x)!}\bruch{1}{3}^x \bruch{2}{3}^{1-x} \right)^2[/mm]

aber jetzt ist [mm] \bruch{1!}{x!(1-x)!}[/mm] nur defniert für [mm]x \in \{0,1\}[/mm], weil ich für negative Zahlen doch keine Fakultäten berechnen kann, oder?
Muss ich dann nur die beiden Werte ausrechnen oder ist das alles falsch?

        
Bezug
Verknüpfung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:25 Di 06.12.2011
Autor: kamaleonti

Hallo ella87,

> Es seien die Funktionen [mm]f: \IR \to \IR[/mm] mit [mm]f(x)=x^2[/mm] und [mm]g: \IR \to \IR[/mm]
> mit [mm]g(x)=(x-\bruch{1}{2})^2[/mm] gegeben.
>  X sein binomialverteilte Zufallsvariable mit Parametern [mm]1[/mm]
> und [mm]\bruch{1}{3}[/mm].
>  
> Bestimmen Sie die Verteilungen
>  (a)[mm]f \circ X[/mm]
>  (b)[mm]g \circ X[/mm]
>  X binomialverteilte
> Zufallsvariable mit Parametern [mm]1[/mm] und [mm]\bruch{1}{3}[/mm]
> bedeutet:
>  
> [mm]P(X=x) = {1 \choose x} \bruch{1}{3}^x \bruch{2}{3}^{1-x}[/mm]
>
> wobei für x doch gilt [mm]x \in \{0,1,2,...\}[/mm] oder?

Sinnvollerweise betrachtet man hier nur [mm] \{0,1\} [/mm] als Wertebereich der Zufallsvariable X.

Für Zahlen [mm] z\in\IZ\backslash\{0,1\} [/mm] gibt es keine Möglichkeit, z Elemente aus einer einelementigen Menge auszuwählen. Man kann für solche z daher definieren

      [mm] \binom{1}{z}:=0. [/mm]

>  
> dann hab ich bei (a):
>  
> [mm]f \circ X[/mm] = [mm]f (X(x ))[/mm] = [mm]\left( {1 \choose x} \bruch{1}{3}^x \bruch{2}{3}^{1-x} \right)^2[/mm]
> = [mm]\left( \bruch{1!}{x!(1-x)!}\bruch{1}{3}^x \bruch{2}{3}^{1-x} \right)^2[/mm]

Warum setzt Du für X(x) eine Wahrscheinlichkeit ein? X nimmt doch nur die Werte 0 und 1 an (das sagt zum Beispiel aus, ob ein Münzwurf erfolgreich war, oder nicht).

Bei a) ist [mm] f(0)=0^2=0 [/mm] und [mm] f(1)=1^2=1. [/mm] Die Funktion [mm] $f\circ [/mm] X$ hat also die Werte 0 und 1. Nun ist nach der Verteilung von [mm] $f\circ [/mm] X$ gefragt.

Zu berechnen ist also [mm] $P(f\circ [/mm] X=0)$ und [mm] $P(f\circ [/mm] X=1)$.

LG

Bezug
                
Bezug
Verknüpfung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:41 Di 06.12.2011
Autor: ella87

danke, den ersten Teil habe ich glaub ich verstanden.

> Bei a) ist [mm]f(0)=0^2=0[/mm] und [mm]f(1)=1^2=1.[/mm] Die Funktion [mm]f\circ X[/mm]
> hat also die Werte 0 und 1. Nun ist nach der Verteilung von
> [mm]f\circ X[/mm] gefragt.
>  
> Zu berechnen ist also [mm]P(f\circ X=0)[/mm] und [mm]P(f\circ X=1)[/mm].

Hierzu ist mir nicht ganz klar, wie ich das berechne, bzw. wie ich den Zusammenhang zur Binomialverteilung herstelle.
oder ist [mm]P(f\circ X=0)[/mm] das selbe wie [mm]P(X=0)[/mm]?


Bezug
                        
Bezug
Verknüpfung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:43 Di 06.12.2011
Autor: kamaleonti


> danke, den ersten Teil habe ich glaub ich verstanden.
>  
> > Bei a) ist [mm]f(0)=0^2=0[/mm] und [mm]f(1)=1^2=1.[/mm] Die Funktion [mm]f\circ X[/mm]
> > hat also die Werte 0 und 1. Nun ist nach der Verteilung von
> > [mm]f\circ X[/mm] gefragt.
>  >  
> > Zu berechnen ist also [mm]P(f\circ X=0)[/mm] und [mm]P(f\circ X=1)[/mm].
>  
> Hierzu ist mir nicht ganz klar, wie ich das berechne, bzw.
> wie ich den Zusammenhang zur Binomialverteilung herstelle.
>  oder ist [mm]P(f\circ X=0)[/mm] das selbe wie [mm]P(X=0)[/mm]?

Ja, hier ist das so, denn [mm] $f\circ [/mm] X$ ist genau dann Null, wenn auch $X$ Null ist.

>  

LG


Bezug
                                
Bezug
Verknüpfung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:51 Di 06.12.2011
Autor: ella87

dann bekomme ich aber bei der (b) ein Problem...

da hab ich ja dann
[mm]g(0)= \bruch{1}{4}[/mm] und auch [mm]g(1)= \bruch{1}{4}[/mm]

logisch wäre dann ja nur (zumindest nach meiner Logik...):

[mm]P(g \circ X =\bruch{1}{4} ) =1 [/mm]

Bezug
                                        
Bezug
Verknüpfung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:07 Di 06.12.2011
Autor: kamaleonti


> dann bekomme ich aber bei der (b) ein Problem...
>  
> da hab ich ja dann
>  [mm]g(0)= \bruch{1}{4}[/mm] und auch [mm]g(1)= \bruch{1}{4}[/mm]
>  
> logisch wäre dann ja nur (zumindest nach meiner
> Logik...):
>  
> [mm]P(g \circ X =\bruch{1}{4} ) =1[/mm]

So ist es [daumenhoch]!

LG


Bezug
                                                
Bezug
Verknüpfung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:08 Di 06.12.2011
Autor: ella87

danke! :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]