Verschwindungsideal < Algebraische Geometrie < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:58 Mo 23.11.2009 | Autor: | kegel53 |
Aufgabe | Sei [mm] V:=\{(0,0), (1,0), (0,1)\}\subset \mathbb{A}^2_K.
[/mm]
Bestimmen Sie ein Erzeugendensystem des Verschwindungsideals [mm] \mathbb{I}(V)\subset K[X_1,X_2]. [/mm] |
Nabend Leute,
ich tu mir im Moment etwas schwer mit obiger Aufagbe. Wie fang ich hier denn überhaupt an?? Ich weiß nicht wie man sich da ein Erzeugendsystem basteln soll. Könnt mir dabei jemand helfen?
Das wär echt sehr nett. Vielen Dank schon mal.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:50 Di 24.11.2009 | Autor: | kegel53 |
Hat niemand an kleinen Tipp, der mir sicher weiterhelfen würd?
|
|
|
|
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 22:39 Di 24.11.2009 | Autor: | kegel53 |
Ich muss doch hier Polynome [mm] f\in K[X_1,X_2] [/mm] finden, sodass f((0,0))=f((1,0))=f((0,1))=0 und damit kann ich dann ein Erzeugendensystem angeben wie folgt: [mm] \mathbb{I}(V)=
[/mm]
Könnte mir jemand sagen, ob ich auf der richtigen Spur bin und wenn ja, wie ich solche Polynome f finden kann??
Vielen Dank.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:54 Di 24.11.2009 | Autor: | felixf |
Hallo!
> Sei [mm]V:=\{(0,0), (1,0), (0,1)\}\subset \mathbb{A}^2_K.[/mm]
>
> Bestimmen Sie ein Erzeugendensystem des
> Verschwindungsideals [mm]\mathbb{I}(V)\subset K[X_1,X_2].[/mm]
Weisst du, wie du aus Erzeugern von [mm] $\mathbb{I}(V)$ [/mm] und [mm] $\mathbb{I}(W)$ [/mm] Erzeuger von [mm] $\mathbb{I}(V \cup [/mm] W)$ finden kannst?
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:06 Mi 25.11.2009 | Autor: | kegel53 |
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 00:07 Mi 25.11.2009 | Autor: | kegel53 |
Also mit den Erzeugern steh ich immer etwas auf Kriegsfuß von daher ehrlich gesagt nein! Aber ich hab das Skript soeben nochmals durchforstet und bin auf eine Proposition gestoßen, die zu deiner Frage passt.
Es gilt damit nämlich: [mm] \mathbb{I}(X_1\cup X_2)=\mathbb{I}(X_1)\cap \mathbb{I}(X_2)
[/mm]
Kann ich damit die Aufgabe lösen?? Wenn ja wie? Wär echt klasse, wenn du mir hierbei etwas unter Arme greifen könntest, da mir der Durchblick zu fehlen scheint. Dank dir.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:11 Mi 25.11.2009 | Autor: | felixf |
Hallo!
> Also mit den Erzeugern steh ich immer etwas auf Kriegsfuß
> von daher ehrlich gesagt nein! Aber ich hab das Skript
> soeben nochmals durchforstet und bin auf eine Proposition
> gestoßen, die zu deiner Frage passt.
>
> Es gilt damit nämlich: [mm]\mathbb{I}(X_1\cup X_2)=\mathbb{I}(X_1)\cap \mathbb{I}(X_2)[/mm]
>
> Kann ich damit die Aufgabe lösen?? Wenn ja wie?
Wenn [mm] $\mathbb{I}(X_1)$ [/mm] und [mm] $\mathbb{I}(X_2)$ [/mm] teilerfremd sind (also [mm] $X_1$ [/mm] und [mm] $X_2$ [/mm] disjunkt sind), dann ist [mm] $\mathbb{I}(X_1) \cap \mathbb{I}(X_2) [/mm] = [mm] \mathbb{I}(X_1) \mathbb{I}(X_2)$.
[/mm]
Und wenn [mm] $\mathbb{I}(X_1) [/mm] = [mm] \langle f_1, \dots, f_n \rangle$ [/mm] und [mm] $\mathbb{I}(X_2) [/mm] = [mm] \langle g_1, \dots, g_m \rangle$ [/mm] ist, dann ist [mm] $\mathbb{I}(X_1) \mathbb{I}(X_2) [/mm] = [mm] \langle f_1 g_1, f_1 g_2, \dots, f_1 g_m, f_2 g_1, \dots, f_2 g_m, \dots, f_n g_1, \dots, f_n g_m \rangle$.
[/mm]
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 00:57 Mi 25.11.2009 | Autor: | kegel53 |
Okay ers mal vielen Dank dafür.Aber ich weiß leider immer noch nicht, wie ich solche Polynome [mm] f_1,...,f_n [/mm] bzw. [mm] g_1,...,g_n [/mm] finden kann. Könntest du dazu vielleicht ein Beipsiel bringen oder mir anders erklären wie ich zu solchen Polynomen komme?? Vielen Dank.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:01 Mi 25.11.2009 | Autor: | felixf |
Hallo!
> Okay ers mal vielen Dank dafür.Aber ich weiß leider immer
> noch nicht, wie ich solche Polynome [mm]f_1,...,f_n[/mm] bzw.
> [mm]g_1,...,g_n[/mm] finden kann. Könntest du dazu vielleicht ein
> Beipsiel bringen oder mir anders erklären wie ich zu
> solchen Polynomen komme?? Vielen Dank.
Nehmen wir mal $X = [mm] \{ (0, 1) \}$. [/mm] Wenn $f [mm] \in [/mm] K[x, y]$ ein Polynom mit $f(0, 1) = 0$ ist, dann kannst du $f$ in der Form $g [mm] \cdot [/mm] x + h [mm] \cdot [/mm] (y - 1)$ schreiben mit $g, h [mm] \in [/mm] K[x, y]$ (warum?). Daraus folgt [mm] $\mathbb{I}(X) [/mm] = [mm] \langle [/mm] x, y - 1 [mm] \rangle$.
[/mm]
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 01:20 Mi 25.11.2009 | Autor: | kegel53 |
Alles klar ich denke damit dürften alle Fragen geklärt sein. Vielen Dank.
|
|
|
|
|
Hallo,
warum kann ich f in der Form $ g [mm] \cdot [/mm] x + h [mm] \cdot [/mm] (y - 1) $ schreiben? Oder besser gesagt, warum (y-1) und nicht nur y? Und warum steht das x noch drin, wenn man für x Null einsetzt?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:41 Do 26.11.2009 | Autor: | felixf |
Hallo!
> warum kann ich f in der Form [mm]g \cdot x + h \cdot (y - 1)[/mm]
> schreiben? Oder besser gesagt, warum (y-1) und nicht nur y?
> Und warum steht das x noch drin, wenn man für x Null
> einsetzt?
Weil er Punkt $(0, 1)$ ist und nicht $(0, 0)$. Die Funktion $y$ verschwindet in $(0, 1)$ nicht, im Gegensatz zu $y - 1$.
Mach es doch mal einfacher. Ueberleg dir, dass fuer ein Polynom $f [mm] \in [/mm] K[x, y]$ gilt:
$f(0, 0) = 0 [mm] \Leftrightarrow \exists [/mm] g, h [mm] \in [/mm] K[x, y] : f = g x + h y$
Daraus folgt:
$f(0, 1) = 0 [mm] \Leftrightarrow \text{fuer } [/mm] g(x, y) := f(x, y + 1) [mm] \text{ gilt } [/mm] g(0, 0) = 0 [mm] \Leftrightarrow \exists h_1, h_2 \in [/mm] K[x, y] : g = [mm] h_1(x, [/mm] y) x + [mm] h_2(x, [/mm] y) y [mm] \Leftrightarrow \exists h_1, h_2 \in [/mm] K[x, y] : f(x, y) = g(x, y - 1) = [mm] h_1(x, [/mm] y - 1) x + [mm] h_2(x, [/mm] y - 1) (y - 1)$
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 09:17 Do 26.11.2009 | Autor: | kegel53 |
> Hallo!
>
> > Also mit den Erzeugern steh ich immer etwas auf Kriegsfuß
> > von daher ehrlich gesagt nein! Aber ich hab das Skript
> > soeben nochmals durchforstet und bin auf eine Proposition
> > gestoßen, die zu deiner Frage passt.
> >
> > Es gilt damit nämlich: [mm]\mathbb{I}(X_1\cup X_2)=\mathbb{I}(X_1)\cap \mathbb{I}(X_2)[/mm]
>
> >
> > Kann ich damit die Aufgabe lösen?? Wenn ja wie?
>
> Wenn [mm]\mathbb{I}(X_1)[/mm] und [mm]\mathbb{I}(X_2)[/mm] teilerfremd sind
> (also [mm]X_1[/mm] und [mm]X_2[/mm] disjunkt sind), dann ist [mm]\mathbb{I}(X_1) \cap \mathbb{I}(X_2) = \mathbb{I}(X_1) \mathbb{I}(X_2)[/mm].
Könnte man das vielleicht noch irgendwie formal begründen , warum das bei disjunkteh [mm] X_1, X_2 [/mm] so ist?? Danke.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:38 Do 26.11.2009 | Autor: | felixf |
Hallo!
> > Wenn [mm]\mathbb{I}(X_1)[/mm] und [mm]\mathbb{I}(X_2)[/mm] teilerfremd sind
> > (also [mm]X_1[/mm] und [mm]X_2[/mm] disjunkt sind), dann ist [mm]\mathbb{I}(X_1) \cap \mathbb{I}(X_2) = \mathbb{I}(X_1) \mathbb{I}(X_2)[/mm].
>
> Könnte man das vielleicht noch irgendwie formal begründen
> , warum das bei disjunkteh [mm]X_1, X_2[/mm] so ist?? Danke.
Wenn $R$ ein kommutativer Ring mit 1 ist und $I$, $J$ zwei Ideale mit $I + J = R$ sind, dann gilt $I J = I [mm] \cap [/mm] J$: die eine Inklusion ist klar; ist $x [mm] \in [/mm] I [mm] \cap [/mm] J$ und $1 = i + j$ mit $i [mm] \in [/mm] I$, $j [mm] \in [/mm] J$, so ist $x = 1 x = i x + j x$; a $i x [mm] \in [/mm] I J$ und $x j [mm] \in [/mm] I J$ ist folgt $x [mm] \in [/mm] I J$.
Es reicht also zu zeigen, dass [mm] $\mathbb{I}(X_1) [/mm] + [mm] \mathbb{I}(X_2) [/mm] = [mm] K[x_1, \dots, x_n]$ [/mm] ist. Aber es ist ja [mm] $\mathbb{I}(X_1) [/mm] + [mm] \mathbb{I}(X_2) [/mm] = [mm] \mathbb{I}(X_1 \cap X_2)$, [/mm] und wenn [mm] $X_1 \cap X_2 [/mm] = [mm] \emptyset$ [/mm] ist, ist [mm] $\mathbb{I}(X_1 \cap X_2) [/mm] = [mm] K[x_1, \dots, x_n]$.
[/mm]
LG Felix
|
|
|
|