matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-VersicherungsmathematikVersicherung und Risikoaversio
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Versicherungsmathematik" - Versicherung und Risikoaversio
Versicherung und Risikoaversio < Versicherungsmat < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Versicherungsmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Versicherung und Risikoaversio: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:43 Do 21.07.2016
Autor: Mathics

Aufgabe
Herr Ekim denkt daüber nach, Landwirte gegen den Verlust von Schafen durch Angriff eines Wolfs zu versichern. Er weiß, dass es 100 risikoaverse Landwirte mit jeweils 100 Schafen gibt. Es gibt genau einen hungrigen Wolf im Landkreis, der in jedem Monat genau eines der Schafe im Landkreis frisst. Der Wolf wählt seine Beute komplett zufällig, so dass jedes Schaf im Landkreis die gleiche Wahrscheinlichkeit besitzt, vom Wolf gefressen zu werden. Falls ein Landwirt eins seiner Schafe verliert, kauft er ein neues zu einem Preis von 200 Euro. Herr Ekim denkt darüber nach, eine Versicherungsprämie von 2 Euro pro Monat und Landwirt (d.h. 0,02 Euro je Schaf) zu verlangen. Wenn ein Landwirt die Versicherung abschlieflt, erhält er 200 Euro im Falle, dass eines seiner Schafe getötet wird, andernfalls nichts. Herr Ekims Geldnutzenfunktion ist gegeben durch U(y) = [mm] \wurzel{y}. [/mm] Welche der folgenden Aussagen sind wahr?


Würden alle Landwirte die Versicherung zu einem Preis von 2€ abschließen?

Hallo,

ich bin mir bei dieser Aufgabe in meiner Argumentation etwas unsicher.

Zum einen gilt doch:

Wir kennen zwar die Nutzenfunktion der Landwirte nicht, aber wissen zumindest, dass sie risikoavers sind. Wenn die Versicherungsprämie versicherungsmathematisch fair wäre, also der erwartete Gewinn der Versicherung gleich Null ist, dann würden die Landwirte sich vollständig versichern.

Liegt das vor? Überprüfung:

Gewinn der Versicherung = 100*2 - 200 = 0

Der Versicherer Herr Ekim erhält von allen 100 Landwirten 2€ Prämie und muss einem Landwirten mit Sicherheit 200€ zahlen, da der Wolf mit Sicherheit ein Schaf frisst.

Soweit so gut. ABER: dann habe ich mir den Gewinn der Landwirte bei der ganzen Sache angeschaut:

Für einen Landwirten gilt ja:

Gewinn bei Abschluss = 1/100 * (-200 - 2 +200) + (99/100)*(-2) = -2
Gewinn bei Nicht-Abschluss = 1/100 * (-200) = -2

Der Gewinn bzw. Verlust ist sowohl bei Abschluss als auch bei Nicht-Abschluss gleich. Wieso sollten die Landwirte die Versicherung also abschließen?


LG
Mathics


        
Bezug
Versicherung und Risikoaversio: Antwort
Status: (Antwort) fertig Status 
Datum: 17:27 Sa 23.07.2016
Autor: leduart

Hallo
da die Landwirte risikoadvers sind schließen sie ab, da die Versicherung ja nicht teurer ist als keine und jeder hofft , dass es seinen Nachbarn trifft. in 10 Monaten z.b haben sie die Chance 10 zu 1 zu profitieren.

Gruß leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Versicherungsmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 10h 15m 2. HJKweseleit
UFina/Effektiver Zinssatz
Status vor 19h 45m 3. Dom_89
DiffGlGew/Lösung der DGL bestimmen
Status vor 21h 45m 2. Gonozal_IX
UWTheo/Konstruktion von ZV
Status vor 1d 8h 07m 2. leduart
Transformationen/Faltung zeichnerisch lösen
Status vor 1d 11h 23m 4. Fulla
Mengenlehre/Mengenlehre
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]