matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationVerstaendnisfrage bei Flaeche
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Verstaendnisfrage bei Flaeche
Verstaendnisfrage bei Flaeche < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verstaendnisfrage bei Flaeche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:05 Mo 01.06.2009
Autor: royalbuds

Aufgabe
Berechnen Sie die von den angegebenen Funktionen eingeschlossene (endliche) Fläche

i) $xy = 4, x = 1, x = 4, y = 0$
ii) [mm] $4(y^2 [/mm] - [mm] x^2) [/mm] + [mm] x^3 [/mm] = 0$

Hallo,

ich verstehe hier nicht welche Flaeche gemeint ist. Bei i) ist es ja noch ganz klar. Die Flaeche kann man ja noch gut zeichnen und sich vorstellen da hier ja auch noch Grenzen angegeben sind.
Die ii) finde ich etwas komisch. Hier sind ja nicht mal Grenzen angegeben.
Ist bei der Aufgabe die Flaeche gemeint, die im ersten Quadranten von i) und ii) gleichzeitig eingeschlossen werden?

Das hab ich nun einfach mal angenommen und folgendes gemacht:

$xy=4$ habe ich umgestellt und habe nun $f(x) = [mm] \frac{4}{x}$, [/mm] das kann man ja mit den Grenzen gut integrieren.
[mm] $4(y^2 [/mm] - [mm] x^2) [/mm] + [mm] x^3 [/mm] = 0$ habe ich nach [mm] $\pm y=\wurzel{x^2-\frac{x^3}{4}}$ [/mm] umgestellt.

Reicht es nun einfach die beiden Funktionen in dem Intervall [1,4] zu integrieren und voneinander abzuziehen?

Gruss

        
Bezug
Verstaendnisfrage bei Flaeche: Ideen
Status: (Antwort) fertig Status 
Datum: 14:14 Mo 01.06.2009
Autor: weightgainer

Hallo,

> Berechnen Sie die von den angegebenen Funktionen
> eingeschlossene (endliche) Fläche
>  
> i) [mm]xy = 4, x = 1, x = 4, y = 0[/mm]
>  ii) [mm]4(y^2 - x^2) + x^3 = 0[/mm]
>  

>  
> [mm]xy=4[/mm] habe ich umgestellt und habe nun [mm]f(x) = \frac{4}{x}[/mm],
> das kann man ja mit den Grenzen gut integrieren.
>  [mm]4(y^2 - x^2) + x^3 = 0[/mm] habe ich nach [mm]\pm y=\wurzel{x^2-\frac{x^3}{4}}[/mm]
> umgestellt.
>  
> Reicht es nun einfach die beiden Funktionen in dem
> Intervall [1,4] zu integrieren und voneinander abzuziehen?
>  
> Gruss  

Ich verstehe das eigentlich als zwei getrennte Aufgaben.
In (i) machst du ja eigentlich schon alles, was nötig ist und kannst mit dem Integral die eingeschlossene Fläche berechnen.

In (ii) formst du richtig um und bekommst mit [mm]y=\pm\wurzel{x^2-\frac{x^3}{4}}[/mm] zwei Funktionen, die auch eine Fläche einschließen. Da die beiden natürlich symmetrisch zur x-Achse sind, kannst du also durch das Integral über eine der beiden Funktionen die Hälfte dieser Fläche berechnen. Wegen dieser Symmetrie schließen die beiden aber nur dann eine Fläche ein, wenn sie die x-Achse schneiden (wenn du das mal zeichnen lässt, wird das klar, denke ich). Also kannst du mit diesen Schnittpunkten die Integrationsgrenzen finden.
[Dateianhang nicht öffentlich]

Gruß,
weightgainer


Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
        
Bezug
Verstaendnisfrage bei Flaeche: unabh. Aufgaben / keine Funkt.
Status: (Antwort) fertig Status 
Datum: 14:58 Mo 01.06.2009
Autor: Al-Chwarizmi


> Berechnen Sie die von den angegebenen Funktionen
> eingeschlossene (endliche) Fläche
>  
> i) [mm]xy = 4, x = 1, x = 4, y = 0[/mm]
>  ii) [mm]4(y^2 - x^2) + x^3 = 0[/mm]
>  
> Hallo,
>  
> ich verstehe hier nicht welche Flaeche gemeint ist. Bei i)
> ist es ja noch ganz klar. Die Flaeche kann man ja noch gut
> zeichnen und sich vorstellen da hier ja auch noch Grenzen
> angegeben sind.
>  Die ii) finde ich etwas komisch. Hier sind ja nicht mal
> Grenzen angegeben.
>  Ist bei der Aufgabe die Flaeche gemeint, die im ersten
> Quadranten von i) und ii) gleichzeitig eingeschlossen
> werden?



Die Aufgabenstellung ist wirklich nicht besonders gut
formuliert. Es wird nicht wirklich klar, dass es sich bei
den Teilen  i)  und  ii)  um zwei getrennte Aufgaben
handeln soll.

Zudem sind (in beiden Aufgaben) gar nicht Funktionen,
sondern Gleichungen bzw. Relationen für Punkte (x,y) in
der Ebene gegeben.  Ich würde dich gerne bitten, die
Lehrkraft auf diesen begrifflichen Fehler hinzuweisen,
denn der Begriff der Funktion ist doch in der Mathematik
ein wirklich grundlegender, den man insbesondere korrekt
verwenden soll, wenn man Mathe lehrt.

Die Gleichung in  ii)  ist, wie weightgainer schon erklärt
hat, eine Kurve, die mit ihrer Schleife ein endliches
Flächenstück umschliesst, dessen Flächeninhalt man
berechnen kann - so wie man auch den Flächeninhalt
eines Kreises (besser gesagt der Kreisscheibe, die vom
Kreis umschlossen wird) berechnet.

LG     Al-Chw.
  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]