matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikVerständnisproblem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Diskrete Mathematik" - Verständnisproblem
Verständnisproblem < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verständnisproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:10 So 16.02.2014
Autor: pc_doctor

Hallo,
ich übe für die Mathe-Klausur und komme bei einer Aufgabe nicht weiter.
Sei M = {1,2,3,4}
Ich soll nun eine Äquivalenzrelation draus machen
Es muss also Reflexivitiät, Symmetrie und Transivität erfüllt sein.

[mm] Re_{rst} [/mm] = [mm] {\underbrace{ (1,1), (2,2),(3,3),(4,4)}_{=reflexiv}, (1,2),(2,1),(3,4),(4,3)...} [/mm]

So hier ist mein Problem. Muss im symmetrischen Abschluss (3,4) (4,3) auch drin sein? Eigentlich ja schon,weil (1,2),(2,1)ja auch drin sind,, laut Lösung aber nicht. Wieso sind die Tupel (3,4),(4,3) im symmetrischen Abschluss falsch?

Vielen Dank im Voraus

        
Bezug
Verständnisproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 11:26 So 16.02.2014
Autor: Sax

Hi,

> Hallo,
>  ich übe für die Mathe-Klausur und komme bei einer
> Aufgabe nicht weiter.
>  Sei M = {1,2,3,4}
>  Ich soll nun eine Äquivalenzrelation draus machen

daraus ? Woraus ?
Die Aufgabe kann entweder darin bestehen, eine Aquivalenzrelation darauf (auf der Menge M) zu konstruieren, oder (wahrscheinlicher) aus (nämlich aus einer vorgegebenen Relation R) durch Hinzufügen (möglichst weniger) Paare aus [mm] M^2 [/mm] diese Relation R so zu erweitern (abzuschließen), dass die Erweiterung eine Äquivalenzrelation wird.

>  Es muss also Reflexivitiät, Symmetrie und Transivität
> erfüllt sein.
>  
> [mm]Re_{rst}[/mm] = [mm]{\underbrace{ (1,1), (2,2),(3,3),(4,4)}_{=reflexiv}, (1,2),(2,1),(3,4),(4,3)...}[/mm]
>  
> So hier ist mein Problem. Muss im symmetrischen Abschluss
> (3,4) (4,3) auch drin sein? Eigentlich ja schon,weil
> (1,2),(2,1)ja auch drin sind,, laut Lösung aber nicht.
> Wieso sind die Tupel (3,4),(4,3) im symmetrischen Abschluss
> falsch?

Ich nehme an, dass sie in der Lösung deshalb nicht auftauchen, weil weder (3,4) noch (4,3) Elemente von R waren.

>  
> Vielen Dank im Voraus

Gruß Sax.

Bezug
                
Bezug
Verständnisproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:31 So 16.02.2014
Autor: pc_doctor

Hallo Sax,
ja du hast Recht. Es ist noch eine Relation R gegeben, komischerweise habe ich nur die Menge M  betrachtet. Hab meinen Fehler erkannt.
Vielen Dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]