matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikVerständnisproblem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stochastik" - Verständnisproblem
Verständnisproblem < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verständnisproblem: Frage1
Status: (Frage) beantwortet Status 
Datum: 10:24 Mi 05.10.2005
Autor: svenchen

Hallo, musste grade leider festsetllen, dass ich eine ganz Grundlegende Aufgabe nicht verstehe.

Also:

Aus 10 Bildern soll ein Plakat hergestellt werden.  Allerdings ist der Platz des Plakates begrenzt, da es nur Platz für 6 Bilder hat. Wieviele Plakatkombinationen sind denkbar, wenn jedes der 10 Bilder beliebig oft kopiert werden kann (mit zurücklegen, Reihenfolge der Bilder ist unwichtig)?

Hier betrachtet man eineGesamtmenge N (10 Bilder) aus denen k Bilder (6 Bilder) angeordnet werden sollen. Also gibt es "15 über  6" Möglichkeiten.



Diese Aufgabe ist mir klar, jedoch schaffe ich es nicht dieses Prinzip auf folgende Aufgabe zu übertragen:

In einer Urne befinden sich 7 verschiedene Kugeln. Es werden 20 Kugeln mit zurücklegen entnommen. Wieviele Kombinationen sind denkbar?

Was ist hier die Gesamtmenge? Müssten ja wohl die 7 Kugeln sein. Nur wenn ich das dann ausrechne mit N = 7 und k = 20 komme ich auf kein vernünftiges Ergebnis.

Könnte mir einer erklären, wie solche Aufgabentypen funktionieren?

        
Bezug
Verständnisproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 11:22 Mi 05.10.2005
Autor: Zwerglein

Hi, svenchen,

> Aus 10 Bildern soll ein Plakat hergestellt werden.  
> Allerdings ist der Platz des Plakates begrenzt, da es nur
> Platz für 6 Bilder hat. Wieviele Plakatkombinationen sind
> denkbar, wenn jedes der 10 Bilder beliebig oft kopiert
> werden kann (mit zurücklegen, Reihenfolge der Bilder ist
> unwichtig)?
>  
> Hier betrachtet man eineGesamtmenge N (10 Bilder) aus denen
> k Bilder (6 Bilder) angeordnet werden sollen. Also gibt es
> "15 über  6" Möglichkeiten.

Wenn mit der Aufgabe gemeint ist, dass auf dem Plakat ein- und dasselbe Bild auch mehrfach auftreten darf, dann hast Du Recht!

>
> Diese Aufgabe ist mir klar, jedoch schaffe ich es nicht
> dieses Prinzip auf folgende Aufgabe zu übertragen:
>  
> In einer Urne befinden sich 7 verschiedene Kugeln. Es
> werden 20 Kugeln mit zurücklegen entnommen. Wieviele
> Kombinationen sind denkbar?
>  
> Was ist hier die Gesamtmenge? Müssten ja wohl die 7 Kugeln
> sein. Nur wenn ich das dann ausrechne mit N = 7 und k = 20
> komme ich auf kein vernünftiges Ergebnis.

Mit "Kombinationen" ist ja gemeint, dass auch hier die Reihenfolge der gezogenen Kugeln keine Rolle spielen soll.

Hier gilt dann die Formel, die Du auch bei Deiner ersten Aufgabe verwendet hast:  [mm] \vektor{N+k-1 \\ k}, [/mm]
wobei N die Anzahl der verschiedenen Kugeln in der Urne und k die Anzahl der Elemente in den Kombinationen darstellt. Dabei komme ich auf 230230 Möglichkeiten.

Zu Deiner Frage, "wie solche Aufgabentypen funktionieren" ist zu sagen, dass es gerade in der Kombinatorik oft nicht ganz leicht ist, die richtige Formel zu erwischen.
Wichtig ist zunächst:
1. Kommt's auf die Reihenfolge der Elemente an oder nicht?
Wenn nicht, handelt sich's um Kombinationen und bei diesen ist irgendwie die Formel "n über k" im Spiel.
Wenn ja, sind's Variationen.
2. Können sich die Elemente wiederholen (Ziehen mit Zurücklegen) oder nicht (Ziehen ohne Z.)
Bei Variationen ergeben sich daraus die Formeln
[mm] n^{k} [/mm] (Ziehen mit Z.)
bzw.
[mm] \bruch{n!}{(n-k)!} [/mm] (Ziehen ohne Z.)

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]