matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationVertauschen von Grenzwerten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - Vertauschen von Grenzwerten
Vertauschen von Grenzwerten < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vertauschen von Grenzwerten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:42 So 27.11.2011
Autor: hilbert

Ich soll zeigen, dass wenn ich eine Reihe über intbare Fkt. habe

hier: [mm] \summe_{i=1}^{\infty}f_i [/mm] mit [mm] \summe_{i=1}^{\infty}\integral{|f_i| dx}<\infty, [/mm] dass dann die Reihe fast überall konvergiert und ich Integral und Summe vertauschen darf.

Meine Idee ist es nun, da ich ja den Betrag betrachten muss, mich auf den positiven Teil bzw negativen Teil der Fkt zu beschränken.

Die Reihe ist demnach entweder monoton wachsend oder fallend.
Folgt nun aus [mm] \summe_{i=1}^{\infty}f_i [/mm] mit [mm] \summe_{i=1}^{\infty}\integral{|f_i| dx}<\infty [/mm] auch [mm] \summe_{i=1}^{\infty}f_i [/mm] < [mm] \infty? [/mm]
Dann hätte ich schonmal die Konvergenz nach dem Satz der monotonen Konvergenz.

Wie mache ich nun weiter? Wie kann ich zeigen dass ich die Grenzwerte vertauschen darf? Bisweilen ging das ja nur bei gleichmäßiger Konvergenz.

Vielen Dank im Voraus

        
Bezug
Vertauschen von Grenzwerten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:58 So 27.11.2011
Autor: kamaleonti

Hallo hilbert,
> Ich soll zeigen, dass wenn ich eine Reihe über intbare Fkt. habe
>  
> hier: [mm]\summe_{i=1}^{\infty}f_i[/mm] mit [mm]\summe_{i=1}^{\infty}\integral{|f_i| dx}<\infty,[/mm] dass dann
> die Reihe fast überall konvergiert und ich Integral und
> Summe vertauschen darf.
>  
> Meine Idee ist es nun, da ich ja den Betrag betrachten
> muss, mich auf den positiven Teil bzw negativen Teil der Fkt zu beschränken.

Das ist eine gute Idee, aber sie bedarf einer präzisieren Ausführung.

Es ist [mm] f_i=f_i^+-f_i^- [/mm] mit [mm] f_i^+(x):=\max\{0, f(x)\} [/mm] und [mm] f_i^-(x):=\max\{0,-f(x)\}. [/mm]

Setze [mm] a_n:=\sum_{i=1}^n f_i^+ [/mm] und [mm] b_n:=\sum_{i=1}^nf_i^-. [/mm]

Die Folgen [mm] (a_n) [/mm] und [mm] (b_n) [/mm] sind monoton wachsende Folgen in [mm] L(\IR). [/mm]

Um den Satz von der monotonen Konvergenz anwenden zu können, ist zu zeigen

       [mm] \int a_n [/mm] dx, [mm] \int b_n dx\leq [/mm] C

für ein [mm] C\in\IR [/mm] und alle [mm] n\in\IN. [/mm] Es ist nun nicht schwer zu zeigen, dass dieses C durch [mm] \sum_{i=1}^\infty\int|f_i|dx [/mm] gegeben ist.

LG

Bezug
                
Bezug
Vertauschen von Grenzwerten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:40 So 27.11.2011
Autor: hilbert

Also fange ich jetzt z.b. mit [mm] a_n [/mm] an:

[mm] \integral{a_n dx} [/mm] = [mm] \integral{\summe_{i=1}^{n}f_i^{+} dx} [/mm]

leider bin ich mir gerade nicht sicher, da ich meine Unterlagen nicht hier habe, aber ich glaube wenn ich keinen Vorzeichenwechsel habe, darf ich Integral und Summe auf jeden Fall vertauschen oder?

das wäre dann

[mm] \summe_{i=1}^{n}\integral{f_i^{+} dx} <\summe_{i=1}^{n}\integral{|f_i| dx} [/mm] < [mm] \infty. [/mm] Richtig so?

Für [mm] b_n [/mm] liefe das analog.

Und jetzt bin ich fast fertig richtig?^^

Vielen Dank schonmal, ist gerade schon etwas spät. Sehe nicht wie ich weiterkomme.

Bezug
                        
Bezug
Vertauschen von Grenzwerten: Antwort
Status: (Antwort) fertig Status 
Datum: 08:11 Mo 28.11.2011
Autor: fred97


> Also fange ich jetzt z.b. mit [mm]a_n[/mm] an:
>  
> [mm]\integral{a_n dx}[/mm] = [mm]\integral{\summe_{i=1}^{n}f_i^{+} dx}[/mm]
>  
> leider bin ich mir gerade nicht sicher, da ich meine
> Unterlagen nicht hier habe, aber ich glaube wenn ich keinen
> Vorzeichenwechsel habe, darf ich Integral und Summe auf
> jeden Fall vertauschen oder?

Das ist doch hier trivial. Obige Summen sind endliche Summen.

>  
> das wäre dann
>
> [mm]\summe_{i=1}^{n}\integral{f_i^{+} dx} <\summe_{i=1}^{n}\integral{|f_i| dx}[/mm]
> < [mm]\infty.[/mm] Richtig so?

Na ja, das < ist fraglich !,   Weil [mm] f_i^{+} \le |f_i|, [/mm] folgt:

[mm]\summe_{i=1}^{n}\integral{f_i^{+} dx} \le \summe_{i=1}^{n}\integral{|f_i| dx}[/mm]

Also:

[mm]\summe_{i=1}^{n}\integral{f_i^{+} dx} \le \summe_{i=1}^{\infty}\integral{|f_i| dx}[/mm] < [mm] \infty [/mm]  für jedes n

FRED

>  
> Für [mm]b_n[/mm] liefe das analog.
>  
> Und jetzt bin ich fast fertig richtig?^^
>  
> Vielen Dank schonmal, ist gerade schon etwas spät. Sehe
> nicht wie ich weiterkomme.


Bezug
                                
Bezug
Vertauschen von Grenzwerten: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:41 Mo 28.11.2011
Autor: hilbert

Okay das habe ich verstanden.

Bin ich damit jetzt schon fertig? Was genau bringt mir diese Unterteilung in + und - genau? Sehe im Moment nur die Konvergenz.

Bezug
                                        
Bezug
Vertauschen von Grenzwerten: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:21 Mi 30.11.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]