matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikVerteilungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Verteilungen
Verteilungen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:51 Mi 02.08.2006
Autor: alexchill

Aufgabe
Nach dem diesjährigen Doping Destaster bei der Tour de France (diese Klausuraufgabe wurde schon 98 gestellt :)  ) mußte der internationale Radsportverband feststellen, daß 10% aller Profiradfahre gedopt sind.

a) Wie groß ist die Wahrscheinlichkeit, dass bei einem Team bestehend aus 8 Fahrern mindestens 2 gedopt sind.

b) wie viele Fahrer müssen von der Tour Leitung mindestens untersucht weren, damit mit einer Wahrscheinlichkeit von über 50%, wenigstens ein Dopingsünder gefunden wird?

c) Angenommen 10 Teams nehmen an der Tour teil. Ein Team wird von der Tour ausgeschlossen, sobalrd ein Fahrer des Dopings überführt wurde. Wie groß ist der Erwartungswert der ausgeschlossenen Teams?

Hoffe mir kann jemand bei meinen Fragen weiterhelfen - meine vorläufigen Lösungen:

Zu a) [mm] \vektor{8 \\ 1}*0,1^{1}*0,9^{7} +\vektor{8 \\ 0}*0,1^{0}*0,9^{8}=0,813 [/mm] --> 1-0,813=0,187

Zu b)
fehlt mit der Ansatz

Zu c)
Hier weiß ich nicht konkret was ich als "n" und "x" nehmen soll. Ich weiß zwar das ich p ausrechnen und dann in die Formel E(X)=n*p einsetzen muss - das hilft mir jedoch nicht weiter.

Vielen Dank für jeden Tipp!


        
Bezug
Verteilungen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:08 Mi 02.08.2006
Autor: Karl_Pech

Hallo alexchill,


> Nach dem diesjährigen Doping Destaster bei der Tour de
> France (diese Klausuraufgabe wurde schon 98 gestellt :)  )
> mußte der internationale Radsportverband feststellen, daß
> 10% aller Profiradfahre gedopt sind.


Also ist [mm]p := 0.1[/mm] wie du schon festgestellt hast. [ok]


> a) Wie groß ist die Wahrscheinlichkeit, dass bei einem Team
> bestehend aus 8 Fahrern mindestens 2 gedopt sind.

>  
> Zu a) [mm]\vektor{8 \\ 1}*0,1^{1}*0,9^{7} +\vektor{8 \\ 0}*0,1^{0}*0,9^{8}=0,813[/mm]
> --> 1-0,813=0,187
>  


Ich denke das stimmt. [ok] (Den konkreten Wert habe ich jetzt nicht nachgerechnet.)


> b) wie viele Fahrer müssen von der Tour Leitung mindestens
> untersucht weren, damit mit einer Wahrscheinlichkeit von
> über 50%, wenigstens ein Dopingsünder gefunden wird?


Sei [mm]X\sim\operatorname{Bin}(n,0.1)[/mm] die Anzahl der Dopingsünder aus [mm]n[/mm] kontrollierten Fahrern. Gegeben ist:


[mm]P(X \ge 1) = 1-P(X=0) = 1-\binom{n}{0}0.1^00.9^n = 1-0.9^n > 0.5[/mm]

Formt man dies nach [mm]0.9^n[/mm] um, logarithmiert(, und beachtet, daß sich bei der Division mit negativen Zahlen das Ungleichheitszeichen umdreht), kommt man nach dem Aufrunden auf mindestens 7 Fahrer, die kontrolliert werden sollten. Seltsam, daß die Doping-W'keit schon nach der Kontrolle von 7 Fahrern so hoch ist. Entweder mache ich doch einen Denkfehler oder die Tour ist mittlerweile tatsächlich so verkommen!? [haee]


> c) Angenommen 10 Teams nehmen an der Tour teil. Ein Team
> wird von der Tour ausgeschlossen, sobalrd ein Fahrer des
> Dopings überführt wurde. Wie groß ist der Erwartungswert
> der ausgeschlossenen Teams?

>  
> Zu c)
>  Hier weiß ich nicht konkret was ich als "n" und "x" nehmen
> soll. Ich weiß zwar das ich p ausrechnen und dann in die
> Formel E(X)=n*p einsetzen muss - das hilft mir jedoch nicht
> weiter.


Na ja bei a) steht ja, daß ein Team aus 8 Fahrern besteht, also wäre der Erwartungswert für jedes Team [mm]8\cdot{0.1}[/mm]. Und für alle Teilnehmer wäre der Erwartungswert 8. Ich markiere die Frage aber doch lieber als teilweise beantwortet. ;-)



Viele Grüße
Karl





Bezug
                
Bezug
Verteilungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:16 Mi 02.08.2006
Autor: alexchill

Vielen Dank für die rasche Beantwortung. Mit der b) liegt du wohl richtig. Ich hätte einen ähnlichen Ansatz auch mal, aber es dann gelassen weil wir für gewöhnlich nicht mit ln gearbeitet haben, aber nun gut:). Bei c) liegst du glaub ich falsch, ich denke nicht das man davon ausgehen kann, dass die Bedingung unter a) auch für c) gilt ?!

Bezug
        
Bezug
Verteilungen: zu Teil a)
Status: (Antwort) fertig Status 
Datum: 21:39 Mi 02.08.2006
Autor: M.Rex


> Nach dem diesjährigen Doping Destaster bei der Tour de
> France (diese Klausuraufgabe wurde schon 98 gestellt :)  )
> mußte der internationale Radsportverband feststellen, daß
> 10% aller Profiradfahre gedopt sind.
>  
> a) Wie groß ist die Wahrscheinlichkeit, dass bei einem Team
> bestehend aus 8 Fahrern mindestens 2 gedopt sind.
>  

Der Ansatz von Karl ist korrekt, es ist auch sinnvoll, hier über das Gegenereignis zu rechnen, nämlich, dass höchstens ein Fahrer aus einem Team gedopt ist.
Was Karl nur vergass ist der Fall, dass alle sauber sind, also musst du folgendes berechnen.
p(E = mind. 2 Fahrer gedopt) = 1- p(E = höchstens 1 Fahrer gedopt) =
1- [mm] [\vektor{8 \\ 0} [/mm] * [mm] 0,1^{0} *0,9^{8} [/mm] +  [mm] \vektor{8 \\ 1} [/mm] * [mm] 0,1^{1} [/mm] * [mm] 0,9^{7}] [/mm] =...

Marius


Bezug
        
Bezug
Verteilungen: zu c)
Status: (Antwort) fertig Status 
Datum: 21:54 Mi 02.08.2006
Autor: M.Rex


> c) Angenommen 10 Teams nehmen an der Tour teil. Ein Team wird von   > der Tour ausgeschlossen, sobalrd ein Fahrer des Dopings überführt        > wurde. Wie groß ist der Erwartungswert der ausgeschlossenen Teams?

Hallo

Das sinnvollste ist, erst einmal die Wahrscheinlichkeit zu berechnen, dass ein Team sauber bleibt.
Hier gilt:
p = [mm] \vektor{8 \\ 0} [/mm] * [mm] 0,1^{0} [/mm] * [mm] 0,9^{8} \approx [/mm] 0,43 = 43%.

Also beträgt die W-keit, dass ein Team sauber ist, gerade mal 43%.

Der Erwartungswert E ist ja n * p, also in deinem Fall
E = [mm] \underbrace{10}_{Teams} [/mm] * [mm] \underbrace{(1-0,43)}_{W.-keit f. ein Team m. Dopingf.} [/mm]  = 5,7.

Also müsste man nach der Regelung damit rechnen, dass fünf bis sechs  Teams ausgeschlossen werden.



Marius

Bezug
                
Bezug
Verteilungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Do 03.08.2006
Autor: alexchill

Jo - klingt logisch. Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]