matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikVerteilungsfunktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Verteilungsfunktion
Verteilungsfunktion < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilungsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 03:50 So 12.02.2017
Autor: James90

Hi!

Sei X normalverteilt mit Parameter [mm] \mu [/mm] und [mm] \sigma^2 [/mm] und [mm] Y=\frac{1}{2}(X-10). [/mm]

1) Sei [mm] \mu=50 [/mm] und [mm] $\sigma^2=10$. [/mm] Berechne die Verteilung von Y

[mm] $P(Y\le x)=P(\frac{1}{2}(X-10)\le x)=P(X\le [/mm] 2x+10)$

Bis hierhin richtig?

[mm] Z=\frac{X-50}{10} [/mm] -> [mm] P(X\le 2x+10)=P(Z\le \frac{2x+10-50}{10})=P(Z\le \frac{1}{5}x-4) [/mm]

Ist nun Y normalverteilt mit Parameter [mm] \sigma=\frac{1}{5} [/mm] und [mm] \mu=-4 [/mm] ?

Dankeschön!!

        
Bezug
Verteilungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 08:27 So 12.02.2017
Autor: Gonozal_IX

Hiho,

die Aufgabe kann man auf verschiedene Wege lösen. Welchen Weg man wählt, hängt start davon ab, was ihr verwenden dürft:

> [mm]Y=\frac{1}{2}(X-10)[/mm]

i) Wenn ihr verwenden dürft, dass jede lineare Transformation einer Normalverteilung wieder normalverteilt ist, dann weißt du bereits, dass Y normalverteilt ist und die Parameter errechnen sich simpel aus den Rechenregeln für Erwartungswert und Varianz, denn es gilt:
$E[Y] = [mm] \frac{1}{2}\left(E[X] - 10\right)$ [/mm]
[mm] $\text{Var}(Y) [/mm] = [mm] \frac{1}{4} \text{Var}(X)$ [/mm]

Einsetzen liefert die gewünschten Werte

ii) Dein zweiter Ansatz über die Verteilungsfunktion:
$P(Y [mm] \le [/mm] x) = P(X [mm] \le [/mm] 2x + 10) = [mm] P\left(Z \le \frac{2x+10 - \mu}{\sigma}\right) [/mm] = [mm] P\left(Z \le \frac{x - \mu'}{\sigma'}\right)$ [/mm] mit geeigneten [mm] $\mu'$ [/mm] und [mm] $\sigma'$, [/mm] dann sind diese die gesuchten Werte.
Hier hast du auch einen Fehler gemacht:
Du kommst auf

> [mm] P(Z\le \frac{1}{5}x-4)[/mm]

bis dahin ist alles korrekt. Das hat aber nicht obige Form, sondern das wäre umgeformt [mm] $P\left(Z \le \frac{x-20}{5}\right)$ [/mm]
und jetzt kannst du Erwartungswert und Varianz von Y ablesen.

iii) Sauber und eindeutiger wäre der Weg zu zeigen, dass $Y$ die Dichte einer Normalverteilung hat.
Betrachte dazu wie bereits von dir getan:
[mm] $F_Y(x) [/mm] = P(Y [mm] \le [/mm] x) = P(X [mm] \le [/mm] 2x + 10) = [mm] F_X(2x+10)$ [/mm]

Leite nun beide Seiten nach x ab und zeige, dass $F'_Y$ wirklich die Dichte einer Normalverteilung ist.

Gruß,
Gono

Bezug
                
Bezug
Verteilungsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:15 So 12.02.2017
Autor: James90


> Hiho,
>  
> die Aufgabe kann man auf verschiedene Wege lösen. Welchen
> Weg man wählt, hängt start davon ab, was ihr verwenden
> dürft:
>  
> > [mm]Y=\frac{1}{2}(X-10)[/mm]
>  
> i) Wenn ihr verwenden dürft, dass jede lineare
> Transformation einer Normalverteilung wieder normalverteilt
> ist, dann weißt du bereits, dass Y normalverteilt ist und
> die Parameter errechnen sich simpel aus den Rechenregeln
> für Erwartungswert und Varianz, denn es gilt:
>  [mm]E[Y] = \frac{1}{2}\left(E[X] - 10\right)[/mm]
>  [mm]\text{Var}(Y) = \frac{1}{4} \text{Var}(X)[/mm]
>  
> Einsetzen liefert die gewünschten Werte

Cool, danke!

> ii) Dein zweiter Ansatz über die Verteilungsfunktion:
>  [mm]P(Y \le x) = P(X \le 2x + 10) = P\left(Z \le \frac{2x+10 - \mu}{\sigma}\right) = P\left(Z \le \frac{x - \mu'}{\sigma'}\right)[/mm]
> mit geeigneten [mm]\mu'[/mm] und [mm]\sigma'[/mm], dann sind diese die
> gesuchten Werte.
>  Hier hast du auch einen Fehler gemacht:
>  Du kommst auf
>  > [mm]P(Z\le \frac{1}{5}x-4)[/mm]

>  bis dahin ist alles korrekt. Das
> hat aber nicht obige Form, sondern das wäre umgeformt
> [mm]P\left(Z \le \frac{x-20}{5}\right)[/mm]
>  und jetzt kannst du
> Erwartungswert und Varianz von Y ablesen.

Super!

> iii) Sauber und eindeutiger wäre der Weg zu zeigen, dass [mm]Y[/mm]
> die Dichte einer Normalverteilung hat.
>  Betrachte dazu wie bereits von dir getan:
>  [mm]F_Y(x) = P(Y \le x) = P(X \le 2x + 10) = F_X(2x+10)[/mm]
>  
> Leite nun beide Seiten nach x ab und zeige, dass [mm]F'_Y[/mm]
> wirklich die Dichte einer Normalverteilung ist.

[mm] F_Y'(x)=2*F'_X(2x+10)=2*\phi(2x+10) [/mm] Muss ich noch etwas dazu machen?

Danke!!!!

Bezug
                        
Bezug
Verteilungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 07:21 Mo 13.02.2017
Autor: Gonozal_IX

Hiho,

> [mm]F_Y'(x)=2*F'_X(2x+10)=2*\phi(2x+10)[/mm] Muss ich noch etwas
> dazu machen?

[ok]
Wenn du den Weg gehen willst, müsstest du zeigen, dass [mm] $2*\phi(2x+10)$ [/mm] die Form einer Dichte der Normalverteilung hat, d.h. dass [mm] $\mu'$ [/mm] und [mm] $\sigma'$ [/mm] existieren, so dass [mm] $2*\phi(2x+10) [/mm] = [mm] \frac{1}{\sqrt{2\pi\sigma'^2}}e^\frac{(x-\mu')^2}{2\sigma'^2}$ [/mm]

Gruß,
Gono

Bezug
                                
Bezug
Verteilungsfunktion: Das sollte eine Frage sein
Status: (Frage) beantwortet Status 
Datum: 10:02 Mo 13.02.2017
Autor: James90

Danke!!! Du hast mir wirklich sehr geholfen!

Kannst du mir bitte noch erklären wieso der letzte Weg sauberer ist und eindeutig ist? Liegt es am Ablesen von Erwartungswert und Varianz von $ [mm] P(Z\le\frac{x-\mu}{\sigma})$? [/mm]

Es ist doch $ [mm] P(Z\le\frac{x-\mu}{\sigma})=P_Z(\frac{x-\mu}{\sigma})=\Phi(\frac{x-\mu}{\sigma})=P_X(x) [/mm] $, also ist am Ende Y genauso verteilt wie X, aber mit (normalerweise) verschiedenen [mm] \mu [/mm] und [mm] \sigma. [/mm] Ist das nicht sauber?

Bezug
                                        
Bezug
Verteilungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:14 Mo 13.02.2017
Autor: Gonozal_IX

Hiho,

> Es ist doch
> [mm]P(Z\le\frac{x-\mu}{\sigma})=P_Z(\frac{x-\mu}{\sigma})=\Phi(\frac{x-\mu}{\sigma})=P_X(x) [/mm],
> also ist am Ende Y genauso verteilt wie X, aber mit
> (normalerweise) verschiedenen [mm]\mu[/mm] und [mm]\sigma.[/mm] Ist das nicht sauber?

Das kommt drauf an, wie ihr die Normalverteilung definiert habt.
Erstmal ist [mm] $\Phi(x)$ [/mm] die Verteilungsfunktion einer Standardnormalverteilung, aber da steht ja eben nicht [mm] $\Phi(x)$ [/mm] sondern im Argument steht etwas anderes, nämlich [mm] $\frac{x-\mu}{\sigma}$. [/mm]
So ohne Begründung kannst du daraus nicht schließen, dass das wieder die Verteilung einer Normalverteilung ist, es sei denn, ihr habt das so definiert oder bereits gezeigt.
Beispielsweise sähe [mm] $\Phi(\frac{x^2 - \mu}{\sigma})$ [/mm] ja auch fast so aus, wie eine Normalverteilung, ist es aber nicht mehr.

D.h. die lapidare Schlussfolgerung "da steht irgendwas mit [mm] $\Phi$ [/mm] und nem Argument" reicht nicht als Begründung… es sei denn, ihr habt definiert/gezeigt, dass [mm] $\Phi(\frac{x-\mu}{\sigma})$ [/mm] die Verteilungsfunktion einer Normalverteilung mit Parametern [mm] $\mu$ [/mm] und [mm] $\sigma$ [/mm] ist.

Gruß,
Gono


Bezug
                                                
Bezug
Verteilungsfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:57 Mo 13.02.2017
Autor: James90

Danke!! Habe es nun verstanden! :))

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]