matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikVerteilungsfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stochastic Theory" - Verteilungsfunktion
Verteilungsfunktion < Stochastic Theory < University < Maths <
View: [ threaded ] | ^ Forum "Uni-Stochastic Theory"  | ^^ all forums  | ^ Tree of Forums  | materials

Verteilungsfunktion: Frage (beantwortet)
Status: (Question) answered Status 
Date: 14:38 Di 12/12/2017
Author: Mandy_90

Aufgabe
Sei die Verteilungsfunktion

[mm] F(x)=\begin{cases} 0, & \mbox{auf } (\infty,0) \mbox{ } \\ 1, & \mbox{auf } (0,\bruch{1}{3}) \mbox{ } \\ \bruch{1}{3}, & \mbox{auf } [\burch{1}{3},\bruch{2}{3}) \mbox{ } \\ 2x-1, & \mbox{auf } [\bruch{2}{3},1) \mbox{ } \\ 1, & \mbox{auf } [1,\infty) \mbox{ } \\ \end{cases} [/mm]

Bestimmen Sie [mm] F^{-1}(u) [/mm] und zeigen Sie damit explizit, dass [mm] X=F^{-1}(U) [/mm] für [mm] U\sim [/mm] U([0,1]) die Verteilungsfunktion F hat.

Hallo :)

Ich versteh die Aufabe nicht so ganz. Was bedeutet [mm] U\sim [/mm] U([0,1]) ?
Die Definition für [mm] F^{-1}(u) [/mm] lautet
[mm] F^{-1}(u)=inf{x:F(x) \ge u}, [/mm] 0 [mm] \le [/mm] u [mm] \le [/mm] 1

Wie geht es jetzt weiter. Mir fehlt der Ansatz, ich weiß nicht wie ich hier vorgehen muss.

Danke
lg
Mndy_90

        
Bezug
Verteilungsfunktion: Mitteilung
Status: (Statement) No reaction required Status 
Date: 15:04 Di 12/12/2017
Author: Diophant

Hallo,

> Sei die Verteilungsfunktion

>

> [mm]F(x)=\begin{cases} 0, & \mbox{auf } (\infty,0) \mbox{ } \\ 1, & \mbox{auf } (0,\bruch{1}{3}) \mbox{ } \\ \bruch{1}{3}, & \mbox{auf } [\burch{1}{3},\bruch{2}{3}) \mbox{ } \\ 2x-1, & \mbox{auf } [\bruch{2}{3},1) \mbox{ } \\ 1, & \mbox{auf } [1,\infty) \mbox{ } \\ \end{cases}[/mm]

>

> Bestimmen Sie [mm]F^{-1}(u)[/mm] und zeigen Sie damit explizit, dass
> [mm]X=F^{-1}(U)[/mm] für [mm]U%5Csim[/mm] U([0,1]) die Verteilungsfunktion F
> hat.
> Hallo :)

>

> Ich versteh die Aufabe nicht so ganz. Was bedeutet [mm]U%5Csim[/mm]
> U([0,1]) ?

Hm. Ich kann jetzt auch nicht behaupten, die Schreibweise in diesem Zusammenhang zu kennen, aber angesichts des Sachverhalts kann es eigentlich nur eines bedeuten: U soll eine auf [0,1] gleichverteilte Zufallsvariable sein.

> Die Definition für [mm]F^{-1}(u)[/mm] lautet
> [mm]F^{-1}(u)=inf{x:F(x) \ge u},[/mm] 0 [mm]\le[/mm] u [mm]\le[/mm] 1

>

> Wie geht es jetzt weiter. Mir fehlt der Ansatz, ich weiß
> nicht wie ich hier vorgehen muss.

Zunächst mal solltest du deine Verteilungsfunktion nochmals überprüfen. So wie sie jetzt dasteht, ist es keine. Vermutlich ist der Wert 1 für das Intervall (0,1/3) falsch. Und mit den offenen und abgeschlossenen Rändern stimmt auch nicht alles.


Gruß, Diophant

Bezug
                
Bezug
Verteilungsfunktion: Mitteilung
Status: (Statement) No reaction required Status 
Date: 16:52 Di 12/12/2017
Author: Gonozal_IX

Hiho,

> Hm. Ich kann jetzt auch nicht behaupten, die Schreibweise
> in diesem Zusammenhang zu kennen, aber angesichts des
> Sachverhalts kann es eigentlich nur eines bedeuten: U soll
> eine auf [0,1] gleichverteilte Zufallsvariable sein.

da liegst du richtig… [mm] $\mathcal{U}(A)$ [/mm] ist die Standardschreibweise für "(stetige) Gleichverteilung auf der Menge A".

Ist meines Wissens genauso festgelegt, wie dass [mm] $\mathcal{N}(a,b)$ [/mm] die Normalverteilung mit den EW a und Var b ist.

Gruß,
Gono

Bezug
        
Bezug
Verteilungsfunktion: Antwort
Status: (Answer) finished Status 
Date: 16:59 Di 12/12/2017
Author: Gonozal_IX

Hiho,

wie Diophant ja bereits schrieb: Du solltest deine Definition von $F$ nochmal überprüfen… aktuell ist sie definitiv falsch.


>  Die Definition für [mm]F^{-1}(u)[/mm] lautet
> [mm]F^{-1}(u)=inf{x:F(x) \ge u},[/mm] 0 [mm]\le[/mm] u [mm]\le[/mm] 1

Oder in schön:
[mm]F^{-1}(u)=\inf\left{x:F(x) \ge u\right}[/mm]Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)



Und wenn du dein F korrigiert hast, kannst du $F^{-1}$ ebenso als abschnittsweise definierte Funktion direkt angeben.

Und wenn du das hast, kannst du $X = F^{-1}\left(U\right)$ ebenfalls so Abschnittsweise hinschreiben und dann mal ganz stupide die Verteilungsfunktion $P(X \le x)$ berechnen… und wirst festellen, dass $P(X \le x) = F(x)$ gilt. D.h. $F$ ist wirklich die Verteilungsfunktion von X.

Kleiner Tipp: Du musst eigentlich "nur" begründen, wieso $P(X \le x) = P(F^{-1}\left(U) \le x) = P(U \le F(x))$ gilt.

Gruß,
Gono

Bezug
View: [ threaded ] | ^ Forum "Uni-Stochastic Theory"  | ^^ all forums  | ^ Tree of Forums  | materials


Alle Foren
Status vor 7h 26m 3. xXMathe_NoobXx
USons/Binomialentwicklung
Status vor 12h 09m 1. Hela123
UStoc/Beweis Varianz von Summe
Status vor 13h 17m 3. mathnoob9
UWTheo/Konstruktion von ZV
Status vor 22h 21m 7. fred97
UAnaRn/Satz Implizite Funktion System
Status vor 1d 15h 14m 3. Dom_89
SDiffRech/Ableitung bilden
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]